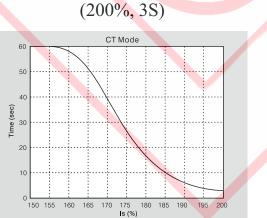
650 Model CT/VT SERIES AC DRIVE APPLICATION MANUAL Voltage vector control universal inverter

Version NO : 1.0

Suitable Model: Single-phase/3-phase power supply 200V/400V Class Overload capacity:

CT : 150%, 60 seconds (Suitable for Extruder, Conveyor and General machines, etc.) VT : 120%, 60 seconds (Suitable for Cooling fan, Air blower, Water pump, etc.)

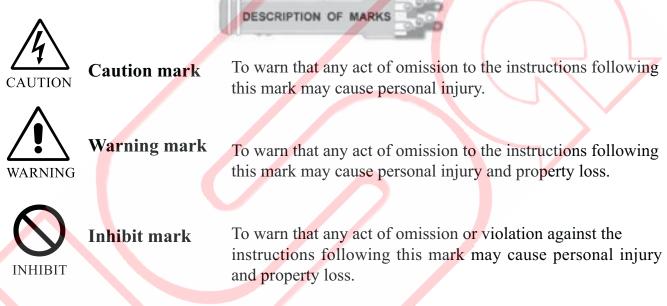
Preface


More and more applications of ac drive are commercially used nowadays as automated process operation becomes popular. Based on our professional commitments by focusing on "provision of modern technologies and promotion of industrial upgrades", we attach this manual to our high performance ac drive. This manual contains detailed instructions on installation (including operation, maintenance, inspection, and repair), peripheral wirings, specifications, and parameter setup process, and gives you complete description of types and technical operation of the product. In addition, please peruse the safety information and precautions of product prior to its use.

This manual also details the various product types and ranges, the features, and enhanced capability, and the full operation with the contents from the easy to the difficult. To help complete the installation setup in a systematic and efficient way, a summary process flowchart is given in the "Test run" section to enable the complicated setup procedures to be skipped while saving time in working out the proper installation.


Thank you for having our LS650 Series voltage vector ac drive, one is the fruit of our years of concerted research efforts which incorporate the most advanced IGBT Module design and silent operation to yield the optimum efficiency and economic benefits.

CT Series : (150%, 60S) (175%, 27.5S)


VT Series : (120%, 60S) (145%, 27.5S) (170%, 3S)

The company reserves the right to modify the models and specifications without notice. Copyright and all rights are reserved. No part of this publication may be reproduced in any form.

- Please be sure to peruse this manual prior to the installation, wiring, operation, maintenance, inspection, and repair, and follow the appropriate instructions publisher in this manual to use the product. For any doubts, please consult us, or your local dealers.
- To prevent any personal injury or property loss due to unexpected accident, please strictly abide by the marks of cautions, warning and inhibit and the prompts following those marks published in this manual.
- Keep this manual at a place where handy access is allowed for the operators to refer to.

- This product has been undertaken a stringent QC and provided with reinforced packing materials prior to its ex-factory to ensure and reduce the possibilities of unexpected impact or damage during the shipment.
- Operators referred in this manual include: qualified technicians of service and installation, those who are familiar with technologies involved, and well-disciplined operating employees.

Unless otherwise specified, the 650 Series or LS650 Series mentioned in this Manual means the LSCT650 and LSVT650.

- Each ac drive has been established the default settings prior to its ex-factory; unless otherwise necessary; please do not arbitrarily change any internal set values of parameters. Confirm first the safety tolerance range of the motor or the mechanical system prior to the operation or before setting a required output frequency over 60 Hz.
- Only qualified technician is allowed to operate the ac drive. The qualified technician to this purpose is referred to one who is familiar with the internal construction, installation procedure, operating method, and service steps of the ac drive; and who also knows how to practice safety measures to prevent any occurrence of hazard and/or accident.
- Before installing the ac drive, please first look around the environment of the installation site to see if it is suitable for installation. If yes, please firmly fix the ac drive onto a flat concrete wall or a wall made of vertical metal plate with shield properly mounted to keep it from any impact of foreign objects that may damage the ac drive during its operation.
- When installed inside a control panel, please mount additional cooling fans to the ac drive so as to ensure that the incoming air temperature to the ac drives will not rise too high to affect its operation.
- Please check if all the wires connected to each terminal block are firmly secured, and all the grounding terminals on the ac drive and motor are properly earthed.
- Before operation, please always verify if the voltage of the power supply is in line with the rated voltage of the ac drive; and check if the wirings for additional mounting of brake controller or brake resistance, if any, are corrected.
- The dc bus voltage of the main circuit inside the ac drive is as high as up to 565 VDC (400V Class) / 283 VDC (200V Class); therefore, in order to prevent any critical accidents relevant to the electric shock from taking place, never use your hands to directly touch any internal circuits of the ac drive; meanwhile, do not remove the protection cover when the circuits are electrified. Before performing any service or inspection job, make sure to disconnect the power supply first, wait until the "CHARGE" indicator goes off, and then use a multi-meter to verify there is no VDC between the N and P terminals.
- Terminals inside the ac drive may still carry dangerous voltage even the ac drive stops; so never use hands to touch the terminal block of the ac drive directly. To perform any wiring inspection and service routines, always wait for five minutes or longer after the power supply is turned off and after the "CHARGE" indicator goes off.
- ♦ If the use of ac drive is not desired for an extended period of time, be sure to disconnect the power supply to the ac drive and perform the necessary measures to protect it against dust and moisture so as to avoid unnecessary replacement of parts when using the ac drive in the future.

TABLE OF CONTENTS

Pr	eface	1
De	escriptions of safety marks and cautions	
I.		
	◆ Receiving	1-1
	• Precautions with regards to installation site	
	Content of nameplate	
	Parts identification	
	• High horsepower control box layout	
	 Removing the AC drive lid 	
	 Mounting direction and space 	
	 Functions and maintenance of cooling fan 	
	• Functions and maintenance of cooring fair	
II.	Wiring	
	 Wiring Schematic View of Peripheral Configuration 	
	Mounting the brake control circuits	2-3
	◆ Main circuit terminal block	
	◆ Wiring Method	
	• 1-Phase Main Circuit Wiring Diagram (100-120V)	2-5
	• 1-Phase Main Circuit Wiring Diagram (200-240V)	2-6
	• 3-Phase Main Circuit Wiring Diagram -1	2-7
	• 3-Phase Main Circuit Wiring Diagram -2	2-8
	 Cautionary points 	
	♦ Wire gauge cross-reference table for main circuit and con	ntrol circuit 2-10
	Location of control terminal block	
	 Wiring connection of control circuit terminals 	2-15
	• Cautions for wiring the control circuit	2-15
	• Analog input terminals (Ai1, Ai2, AVG)	2-15
	• Digital input terminals (Di1~Di8, COM)	
	• Do output (Do, DCM)	
	• Function description of control terminals	
	◆ Wiring diagram of control circuit terminal	2-17

III. Digital operation panel
◆ Panel details3-1
◆ Introduction of function keys
◆ Parameter setup mode
◆ Control mode
• Status check menus of digital input terminals
IV. Test run
◆ Test run operation 4-1
• Verification of application
• Parameters and applications indirect impact against the performance
control4-1
• Characteristics of CT and VT4-1
• Cautionary points for setup4-1
• Pre-start service
• Test run
• Operation checklist4-2
♦ Basic parameters setup 4-3
◆ Fast operation control mode
• Fast operation control mode
• Control mode setup4-5
• Parameter setup for auto-operation control
• Multifunctional PID setup
• Functional setup for constant-pressure water pump (Sleep PID control)4-8
• MODBUS Communication setup
V. Description of parameter functions
• Water pump setup5-1
◆ Display setup of operation panel
◆ Operation control parameters
◆ Speed limit
◆ Multi-stage speed frequency command setup
◆ Acceleration/deceleration time
◆ Analog input5-8
◆ Analog (AO) output

TABLE OF CONTENTS

	◆ Digital input	5-14
	◆ Digital (Do) output	5-17
	◆ Jumping frequency	5-18
	◆ Motor Protection setup	5-19
	• Motor nameplate and Drive parameter setting	
	◆ V/F curve setup	5-23
	Communication setup	
	MODBUS communication	5-27
	◆ Failure record	5-33
	◆ External PID	5-34
	◆ Auto operation function	
	• Retrieval parameters	5-38
	• Water pump function	
VI.		
	 Protection and troubleshooting Troubleshooting chart 	6-1
	 Most frequently used troubleshooting 	6-3
	• Host nequently used troubleshooting	
VII.	. Maintenance, inspection & testing	7-1
		0.4
VIII	I. Selection of brake unit	
	Selection of brake resistance	8-3
IV	Annondiv	
17.	 Appendix A Standard specifications 	0.1
	• B Ex-factory set values	
	• C Summary of parameter settings	11-1
	 D Summary of Err codes and diagnostic descriptions 	12-1
	• E Dimensional drawings of mechanism	13-1

IInstallation

Receiving 1	-1
Precautions with regards to installation site . 1	-2
Contents of nameplate 1	-3
Parts identification 1	-4
High horsepower control box layout 1	-4
• Removing the AC drive lid 1	-5
• Mounting direction and space	-7
• Functions and maintenance of cooling fan 1	-8

Receiving

Thank you for purchasing our 650 Model AC DRIVE. To protect your right and interests, please confirm the following receiving inspection prior to the installation and use of ac drive.

Are the descriptions and specifications of the received product the same as your order?

Please check if the contents in the nameplate side-attached to the product are in line with the purchased specifications.

Any breakage ?

Please check the appearance of product for any damage due to transportation, such as ingression of water, damaged package or dents on the product.

Are there any loosened lids/screws?

Use a screwdriver to confirm their tightness if necessary.

Upon receiving Series 650 ac drive, please check it for correct voltage, specifications, and capacity. Any mistake in the voltage class may lead to a burnt-out of the ac drive, and personal injury or fire hazard in serious case.

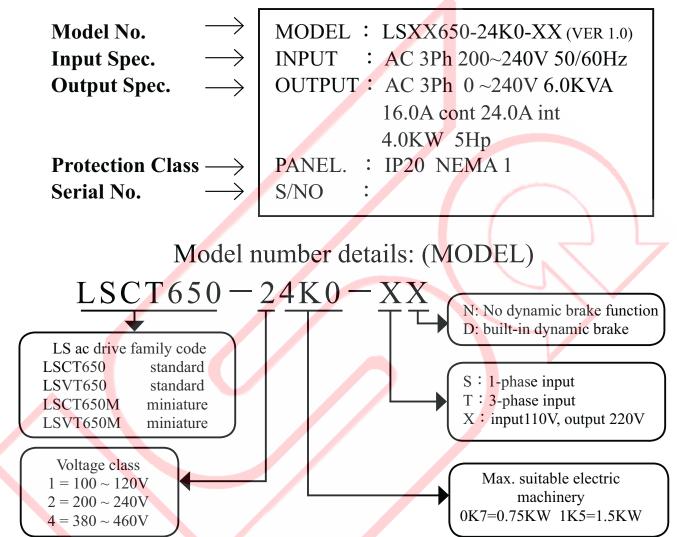
Precautions with regard to installation site

Installation Site

Please keep the ac drive away from the places where the following substances or situations may be easily encountered:

- Inflammable materials, e.g., wood.
- Dust, metal powder, and oil stain.
- Radioactive substance, and EMI.
- Corrosive gases, liquids, water leakage, and high humidity.
- Vibration when installed on a machine vulnerable to vibration.
- Where exposed to direct sunshine, or at an ambient temperature lower than -10 °C or higher than 45 °C site.
- High attitude of 1000m or higher above sea level.

Avoid installing or placing the ac drive in any of the foregoing locations for such adverse circumstances may leave the ac drive open to failure, damage, deterioration, or even fire accident.

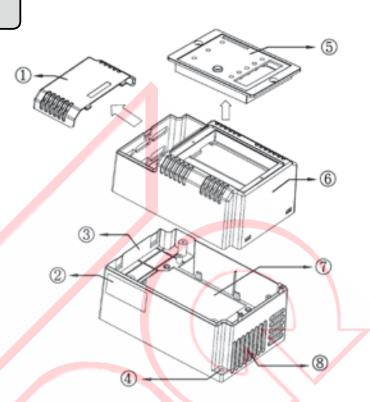

Temperature & Humidity

Installation type	Ambient temperature	Ambient Humidity
Closed Wall Mounting	-10 ~ +40°C	Below 95% RH (non-condensable)
In-Panel Mounting	$-10 \sim +45^{\circ}C$	Below 95% RH (non-condensable)

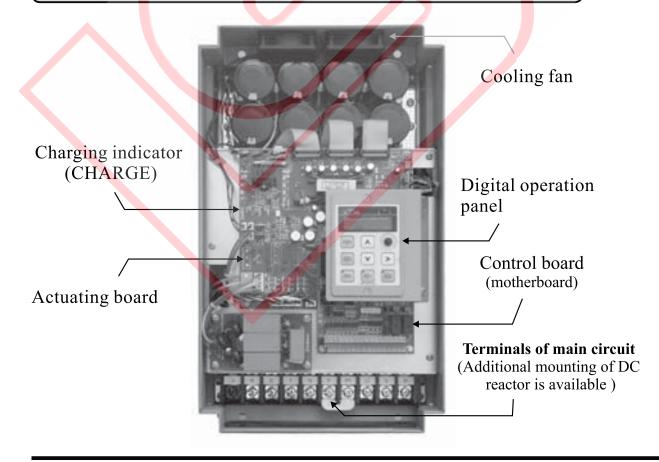
* The above mentioned temperatures and humidity are provided as reference only for your environmental assessment of installation.

Content of nameplate

The nameplate right-sided to the ac drive contains the model, specifications, protection class and other information as described below.



Reference model number, specifications and power


Model No.	Power	Model No.	Power	Model No.	Power
0K2	0.2KW	011	11KW	075	75KW
0K4	0.4KW	015	15KW	090	90KW
0K7	0.75KW	018	18.5KW	110	110KW
1K5	1.5KW	022	22KW	132	132KW
2K2	2.2KW	030	30KW	160	160KW
4K0	4.0KW	037	37KW	185	185KW
5K5	5.5KW	045	45KW	220	220KW
7K5	7.5KW	055	55KW	260(VT series)	260KW

Parts identification

- ① Top lid of terminal block
- ② Specification Nameplate
- (3) AC Drive Base
- ④ Setscrew Holes
- (5) Keyboard Panel
- 6 Top lid of AC drive
- ⑦ Heat Sink Location
- ⑧ Heat Sink Vent

High horsepower control box layout

Removing the AC drive lid 0.5HP~5.0HP

Step 1: Use a thumb to gently push the locking buckle.

Step 2: Push upward and backward to lift the lid and remove the terminal lid.

Step 3: To remove the lid for service, use both thumbs to press LH & RH locking buckles to eject the lid.

Step 4: Hold and pull upward to remove the entire lid.

-Installation- I

7.5HP~30HP

Step 1: Take and hold the PULL UP and push the panel up. 40HP~300HP

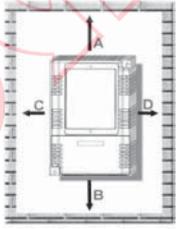
Step 2: Remove the panel.

Step 1: Unscrew to remove four screws first.

Step 2: Carefully remove the panel.

Step 3: Finish the removal of panel.

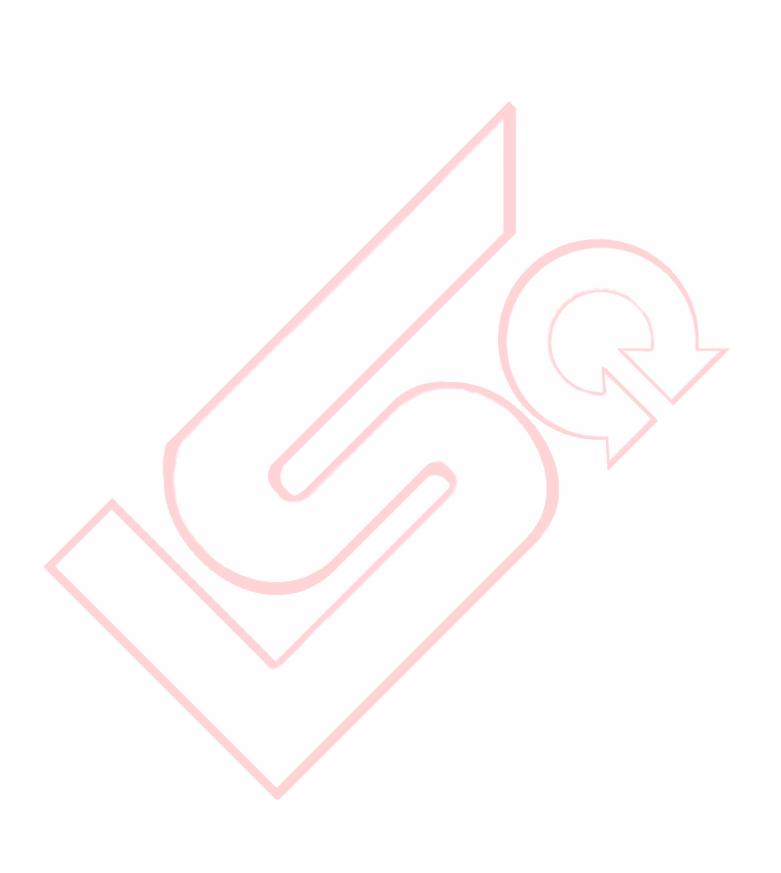
Mounting direction and space


To maintain a good cooling air circulation, the ac drive must be secured in vertical position with sufficient clearance left to its surroundings, abutted components and baffles. Whereas cooling fans are mounted at the base of the ac drive, sufficient space shall be maintained to facilitate the air ventilation.

Cautionary points for installations:

- (1) For application at an ambient temperature over 40°C, please install the ac drive at a well ventilated place or reinforce the cooling device for external environment.
- (2) Momentary generation of high temperature may take place if an additional brake resistor is equipped to the ac drive; please select carefully the installation site for the brake resistor, or mount additional fans to help heat dissipation.
- (3) Installation site should be well ventilated and kept far away from inflammables.
- (4) Determine the minimum clearance between the body of the ac drive and the wall according to the model of ac drive and the horsepower.

After turning off the power supply, wait for five minutes or longer for the complete discharge of the internal capacitor before opening the lid.

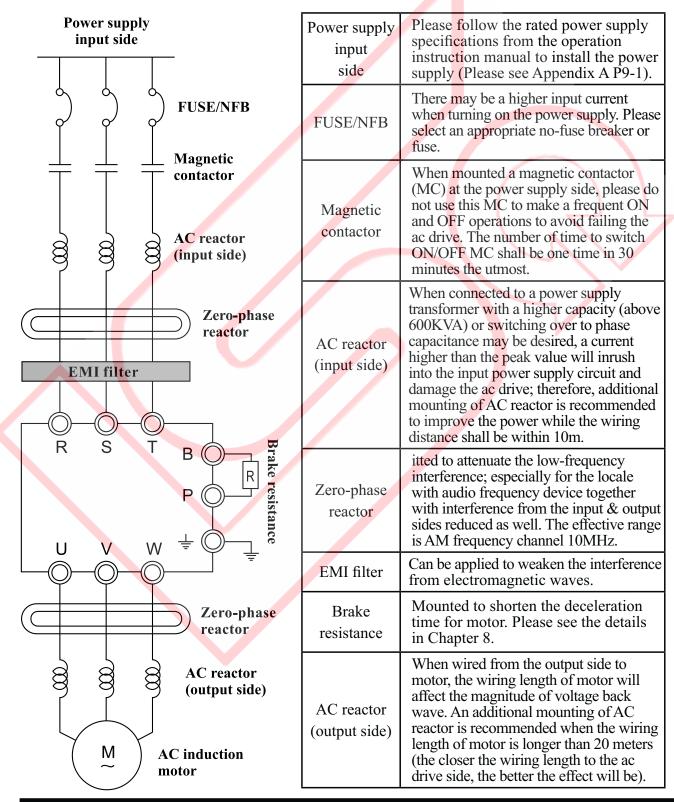


The minimum clearance for in-panel mounting (please see reference diagram and table)

Direction Clearance LS650 capacity	А	В	С	D
Below 2.2kw	\geq 100 mm	$\geq 100 \text{ mm}$	\geq 50 mm	\geq 50 mm
4.0kw ~ 11kw	\geq 120 mm	\geq 120 mm	\geq 50 mm	\geq 50 mm
15kw ~ 22kw	\geq 150 mm	\geq 150 mm	$\geq 100 \text{ mm}$	$\geq 100 \text{ mm}$
30kw ~ 37kw	\geq 200 mm	\geq 200 mm	\geq 150 mm	\geq 150 mm
45kw ~ 75kw	\geq 300 mm	\geq 300 mm	\geq 200 mm	\geq 200 mm
90kw ~ 260kw	\geq 400 mm	\geq 400 mm	\geq 250 mm	\geq 250 mm

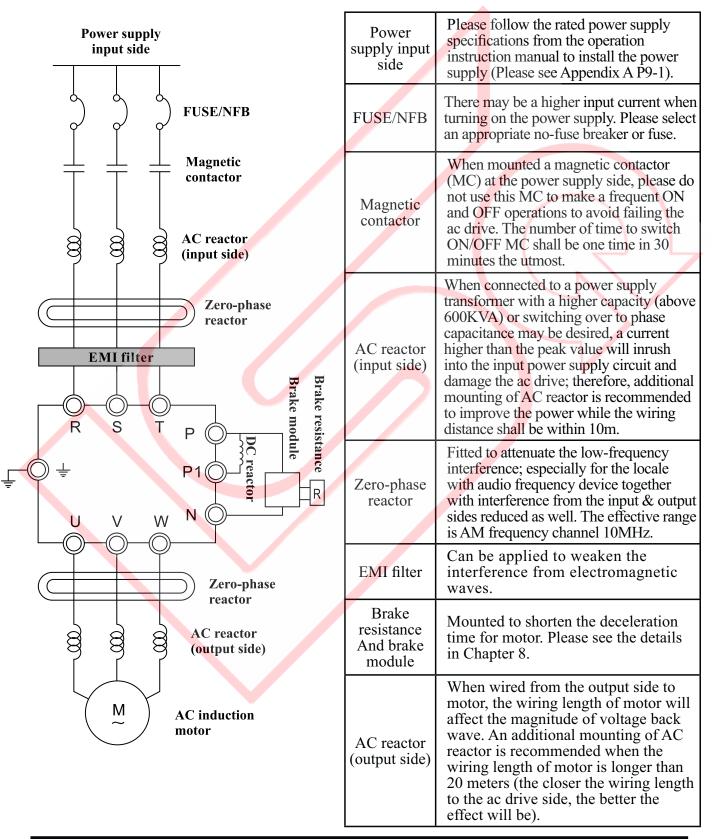
Functions and maintenance of cooling fan

- There is a cooling fan mounted inside the ac drive that can be triggered its running when temperature of ac drive reaches up to 40°C after operation. A temperature rise to reach 85°C (±5°C) due to a heavy & full load or a too-high ambient temperature will trip an over temperature protection (Err10).
- Regular cleaning and maintenance is necessary to ensure the function of cooling fan and thereof heat sink when operating the ac drive at a place with worse environmental conditions, such as the powder, dust, oil sludge and cotton fibers, etc.


II Wiring

◆ Schematic View of Peripheral Configurat	ion 2-1
◆ Mounting the brake control circuits	2-3
◆ Main circuit terminal block	2-4
 Wiring Method 	2-5
Cautionary points	2-9
◆ Wire gauge cross-reference table for main	1
circuit and control circuit	2-10
 Location of control terminal block 	2-12
 Wiring connection of control circuit term 	inals.2-15
◆ Function description of control terminals	2-16
• Wiring diagram of control circuit termin	al2-17

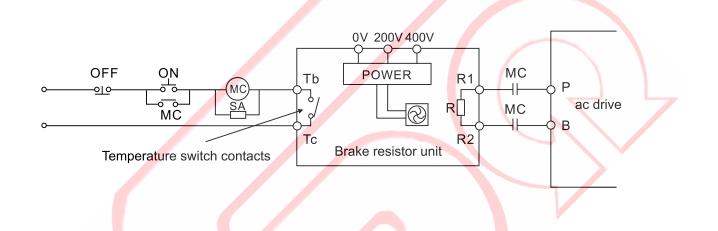
Schematic view of peripheral configuration


3-phase 200V/400V family

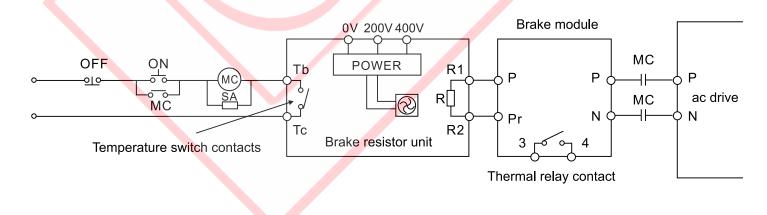
System wiring diagram for model below 20HP (including) (For peripheral machines, please select them according to the need)

3-phase 200V/400V family

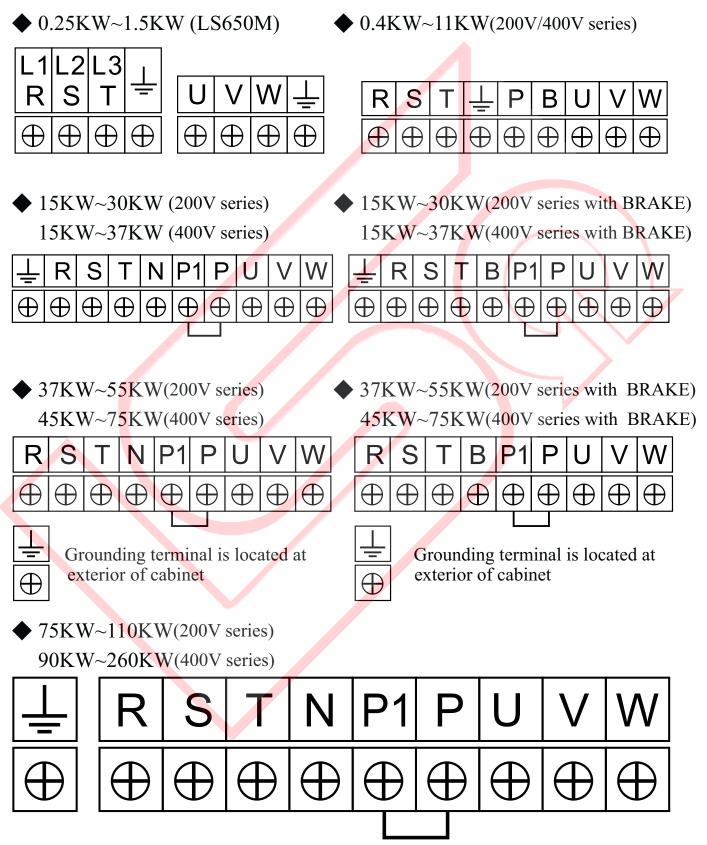
System wiring diagram for model above 25HP (including) (For peripheral machines, please select them according to the need)



Mounting the brake control circuits

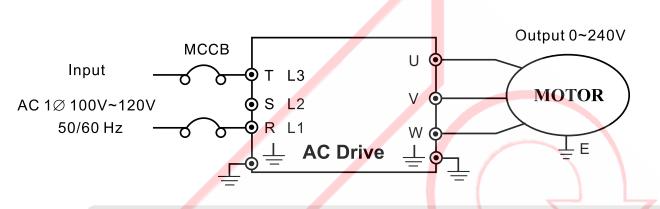

Mounting the brake resistor for overheating protection

To mount the brake resistor (Model No.: LSDR, please see P8-3) onto ac drive for overheating protection.


0.4KW~18KW Ac Drive(200V class/400V class)

22KW~260KW Ac Drive (200V class/400V class)

Main circuit terminal block

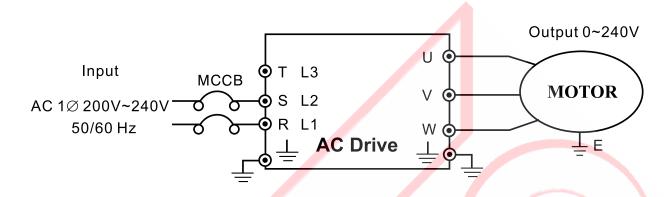


Grounding terminal is located at left lower corner of terminal block

Wiring Method

Phase Main Circuit Wiring Diagram (100-120V)

1-phase input voltage 115V — (LS650M-10K2-SX \ LS650M-10K4-SX \ LS650M-10K7-SX)



 Every ac drive and motor casing must be well grounded to protect from being struck by lighting and electric-shocked to the human body.
 Please wire the 1-phase input voltage 115V to L1 and L3 positions, do not wire it to L2 position.

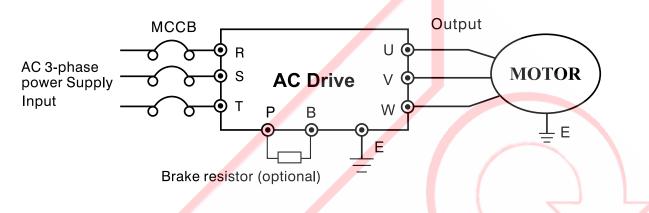
		Type specifications LSDD650M-1DDD-SX	0K2	<mark>0</mark> K4	0K7	
		Applicable motor capacity(KW)	0.2	0.4	0.75	
	Ou	Applicable max. motor horsepower (HP)	0.25	0.5	1	
	put sp	Output capacity (KVA)	0.6	1.2	1.7	
	Output specifications	Continuously rated current (A)	1.6	3.2	4.5	
	atior	Rated output frequency	$0.01 \sim 300.00 \text{HZ}$			
	S	Overload capacity	CT series: rated current 150%,60 Second			
		MAX. Output voltage	2-fold 1-phase input voltage			
	ds	Input voltage / frequency	1-phase 100V~120Vac • 50/60HZ			
	Injecifi	Allowable voltage fluctuating rate	Voltage: ±10%			
	Input specifications	Allowable frequency fluctuating rate		Frequency: ±5%		
	ns	Input current (A)	6	9	17	

1-Phase Main Circuit Wiring Diagram (200-240V)

1-phase input voltage 230V — (LS650M-20K2-S \ LS650M-20K4-S \ LS650M-20K7-S \ LS650M-21K5-S)

 (1) Every ac drive and motor casing must be well grounded to protect from being struck by lighting and electric-shocked to the human body.
 (2) Please wire the 1-phase input voltage 230V to L1 and L2 positions, do not wire it to L3 position.

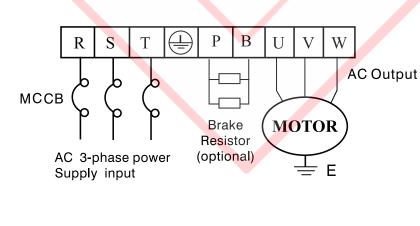
	Type specifications LS□□650M-2□□□-S	0K2	0K4	0K7	1K5	
	Applicable motor capacity (KW)	0.2	0.4	0.75	1.5	
Out	Applicable max. motor horsepower (HP)	0.25	0.5	1	2	
put sp	Output capacity (KVA)	0.6	1.2	1.7	2.7	
Output specifications	Continuously rated current (A)	1.6	3.2	4.5	7.0	
ation	OutpRated output frequency	0.01 ~ 300.00HZ				
S	Overload capability	CT series: rated current 150%, 60 Second VT series: rated current 120%, 60 Second				
	MAX. Output voltage	3-pha	3-phase corresponding input voltage			
ds	Input voltage/frequency	1-phase 200V~240Vac • 50/60HZ				
Inj	Allowable voltage fluctuating rate	Voltage: ±10%				
Input specifications	Allowable frequency fluctuating rate		Frequen	cy: ±5%		
ns	Input current (A)	4.9	6.5	9.7	15.7	


3-Phase Main Circuit Wiring Diagram -1

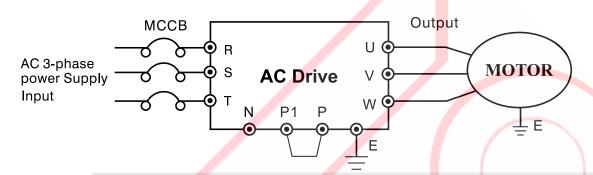
(LS650-20K4 \ LS650-20K7 \ LS650-21K5 \ LS650-22K2 \

LS650-24K0 、LS650-25K5 、LS650-27K5 、LS650-2011)

(LS650-40K7 \ LS650-41K5 \ LS650-42K2 \ LS650-44K0 \


LS650-45K5 、LS650-47K5 、LS650-4011)

- (1) Units in 3-phase 200V and 400V series with a horsepower up to 15HP are fitted a brake circuit. Please see P8-3 for selecting the correct resistance and the watt number.
- (2) Every ac drive and motor casing must be well grounded to protect from being struck by lighting and electric-shocked to the human body.


3-phase power supply terminal block (0.4KW/0.5HP~11KW/15HP)

Symbols	Descriptions
R.S.T	To be connected to 3-phase power supply input
P.B	Can be connected to brake resistor; circuit has been embedded, additional mounting of brake unit is unnecessary.
U.V.W	To be connected to 3-phase motor output terminals
🕒 or 🛓	Grounding terminal

3-Phase Main Circuit Wiring Diagram -2

(LS65	0-2015、	LS650-20	$18 \cdot LS$	650-2022	、LS65	0-2030	LS650-203	37、
LS65	0-2045 、	LS650-20	55 \ LS	650-2075	۰ LS65	0-2090	LS650-21	0)
(LS65	0-4015、	LS650-40	$18 \cdot LS$	650-4022	• LS65	<mark>0-4030</mark> ·	LS650-403	37、
LS65	0-4045	LS650-40	55 \ LS	650-4075	• LS65	<mark>0-4090 ·</mark>	LS650-41	0、
LS65	0-4132 、	LS650-41	50、LS	650-4185	• LS65	0-4220	LS650-426	50)

- Units in 3-phase 200V and 400V series with a horsepower above 20HP are not fitted the brake circuit. Please see P8-1 for selecting the correct resistance and the watt number.
- (2) The brake circuit of 20HP~75HP can be customized and fabricated inside the ac drive.
- (3) Every ac drive and motor casing must be well grounded to protect from being struck by lighting and electric-shocked to the human body.

3-phase power supply terminal block (Please see P2-4 for detailed descriptions)

	Symbols	Descriptions
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	R. S. T	To be connected to a AC 3-phase power supply input
MCCB \bigwedge \bigcap	P. N	P (+) and N (-) terminals can be externally connected to the brake unit, but they can not be connected to brake resistor directly.
(With Brake)	P1. P	To be connected to DC reactor.
R S T B P1 P U V W MCCB	B. P	Can be connected to brake resistor, circuit has been embedded, additional mounting of brake unit is unnecessary.
$\left[\begin{array}{c} p & p \\ p & p \end{array} \right] \left[\begin{array}{c} MOTOR \end{array} \right]$	⊕ or ±	Grounding terminal
AC 3-phase power supply input $= E$	U. V. W	To be connected to 3-phase motor output terminals

Cautionary points

(1) Main circuit wiring

- 1. The input terminals R.S.T, to the power supply and the output terminals U.V. W to the motor shall not be wrongly connected, otherwise, the ac drive will be seriously damaged.
- 2. The output side of ac drive shall not be applied the power capacitor, LC, RC noise filter, etc. elements.
- 3. The main circuit wiring shall be kept away the signal cables from other control equipment (e.g., PLC, electroweak signal system) to avoid the bad interference.
- 4. Please firmly fasten the screws on main circuit terminals to avoid any production of sparkling due to vibration-loosened screws.
- 5. The specifications for the distance between the power supply input and output in ac drive are described in the table below.

	standard wiring length	Limit of wiring length
Distance from power supply system \rightarrow to power supply side of ac drive	Within 2~30 meters	Within 30~300 meters
Output side of ac drive →Junction side of AC electric machinery	Within 2~25 meters	Within 25~200meters
Remedy action to a too-long wiring problem	Additional mounting of input & output reactors is recommended.	Additional mounting of input & output reactors is a must.

If the power line is too long, a parasitic capacitance will be produced from the electric machinery and power lines to the ground (lower potential side) that lead to a generation of high-voltage surge to destroy the voltage-withstanding insulation of ac drive and motor.

(2) Grounding wires

- 1. For the purpose of safety and reducing the noise, please apply the third grounding type \bigoplus to 200V series and special grounding type \bigoplus to 400V series. (grounding impedance below 10 Ω) °
- 2. Be sure to avoid using a common grounding electrode and grounding wires with the other power facilities including the welding machine and dynamo-machines and try to keep the grounding wire away from the power cable of large capacity equipment as far as possible.

(3) Circuit breaker for wiring the main circuit – EMI (Electromagnetic) contactor

To protect the circuit, a NFB, or an additional EMI contactor must be mounted between the AC power supply of main circuit and the input terminals R.S.T. at the power supply side.

***** Use of electric leakage circuit breaker :

- 1. When an exclusive leakage breaker switch for the ac drive is used, please select to set an induced current of 30mA or greater for each unit of ac drive.
- 2. If a general leakage breaker switch is used, please select to set an induced current of 200mA or greater and a time duration of action more than 0.1 second for each unit of ac drive,

(4) Surge absorber

Any coils for the peripheral devises of ac drive, e.g., EMI contactor, relay, solenoid valve, etc., must be connected in parallel with the surge absorber to prevent the noise interference. Please refer to the table below for selecting the surge absorber :

Voltage	Where needed	Specifications of surge absorber
200V	Coils of large capacity other than relay	AC250V 0.5uf 200Ω
200 1	Control relay	AC250V 0.1uf 100Ω
400V	Ditto	AC500V 0.5uf 220Ω

Wire gauge cross-reference table for main circuit and control circuit

- O Before wiring, please confirm that the voltage of power supply conforms to the rated input voltage of the ac drive.
- O Please follow the regulations set forth in Electric Codes to select the specifications of terminal screws and the size of wire diameter and firmly fasten them..
- Wiring the input terminals (3Ø/R.S.T) of power supply side will not cause any phase sequence problem, but wiring the u, v, w terminals at output side may encounter a phase sequence problem and affect the rotational direction of motor; just switch any two of the three wires to fix the problem.

- The wiring operation for the ac drive must be performed only after the power supply is cut off for operation safety.
- O Please mount a no-fuse MCCB (Molded Case Breaker) at the power supply input side to turn on/off the power supply and protect the input side of the ac drive.
- O Properly connect the ground wire to avoid possible electric shock to the operator or Fire accident.

Table (I) 200V~240V

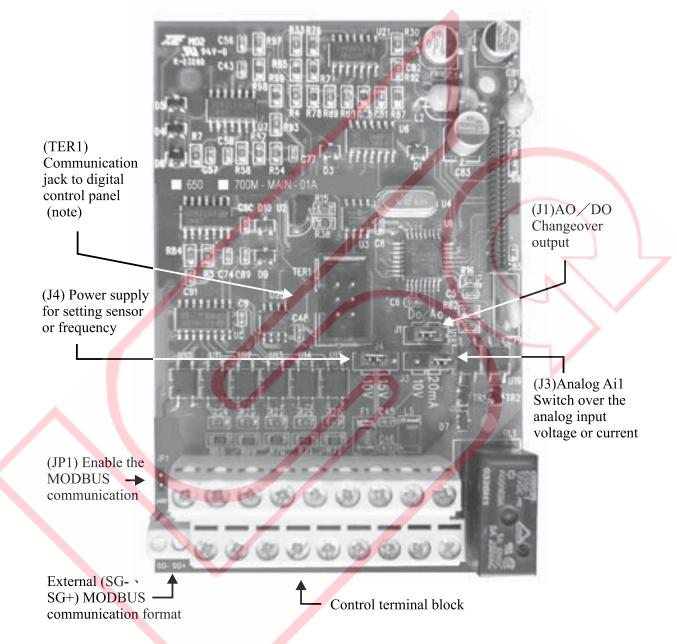
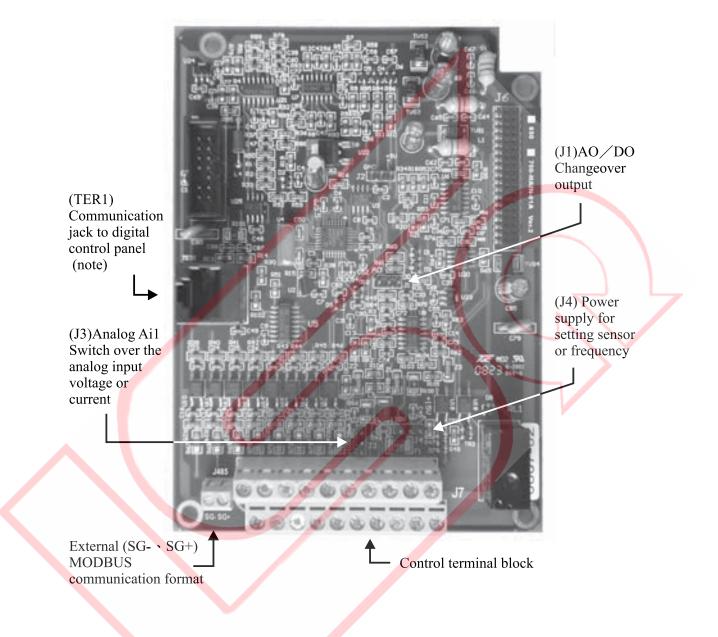

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Specifications Descriptions	20K2	20K4	20K7	21K5	22K2	24K0	25K5	27K5	2011	2015	2018	2022	2030	2037	2045	2055	2075	2090	2110
Current(A) 3 3 10 13 20 30 50 60 73 123 130 173 223 230 300 400 430 300 500 </td <td>Capacity KW/HP</td> <td colspan="4"></td> <td>4.0 / 5</td> <td>/</td>	Capacity KW/HP					4.0 / 5	/	/	/	/	/	/	/	/	/	/	/	/	/	
gauge (mm ²) 2.0 3.5 5.5 8.0 14 30 50 60 80 100 150 Main circuit screws M4 M5 M6 M8 M10 M12 Wire gauge for 0.5 mm ² 1.25 mm ² 1.25 mm ²		5	5	10	15	20	30	50	60	75	125	150	175	225	250	300	400	450	500	550
Wire gauge for				2.0			3.5	5.5	8.0	14		30		50	60	80	1(00	15	50
Wire gauge for control loop (mm²) $0.5 \text{ mm}^2 \sim 1.25 \text{ mm}^2$	Main circuit screws		M4						M5 M6				M8		М	M10 N			112	
	Wire gauge for control loop (mm ²)		$0.5 \text{ mm}^2 \sim 1.25 \text{ mm}^2$																	

Table (II) 380V~460V


Specifications Descriptions	40K7	41K5	42K2	44K0	45K5	47K5	4011	4015	4018	4022	4030	4037	4045	4055	4075	4090	4110	4132	4160	4185	4220	VT 4260
Capacity KW/HP	0.75 / 1	1.5 / 2	2.2 / 3	4.0 / 5	5.5 / 7.5	7.5 / 10	11 / 15	15 / 20	18.5 / 25	22 / 30	30 / 40	37 / 50	45 / 60	55 / 75	75 / 100	90 / 125	/	132 / 175	/	185 / 250	/	/
3-phase MCCB rated current(A)	5	10	15	20	3	0	50	60	10)0	125	150	175	200	225	250	275	300	<mark>3</mark> 50	400	450	530
Power line wire gauge (mm ²)		2.0		3.	.5	5.	.5	8.	.0	14	22	3	8	50	60		10	00	/		120	
Main circuit screws		M4					M5 M6						M8 M10				M12					
Wire gauge for control loop (mm²) $0.5 \text{ mm²} \sim 1.25 \text{ mm²}$																						

Location of control terminal block

LS650M Control board (Motherboard)

- When enabling MODBUS communication is desired, it is necessary to set up F73(Di8 : 15 MODBUS communication) first and insert the JP1.
- * Caution : (Note) the RS-485 communication format is internally exclusive for digital operation panel and different from the external (SG- \ SG+) MODBUS communication format; connecting both of them at the same time for operation is not allowed; only one format can be enabled for use.
- * Please see P2-16 for functional descriptions of (J1 \ J3 \ J4), and P2-14 ~ P2-18 for functional descriptions of control terminal block.

LS650 Control board (Motherboard)

- * When enabling MODBUS communication is desired, it is necessary to set up F73(Di8 : 15 MODBUS communication) first and connect the Di8 to COM.
- * Caution : (Note) the RS-485 communication format is internally exclusive for digital operation panel and different from the external (SG- \ SG+) MODBUS communication format; connecting both of them at the same time for operation is not allowed; only one format can be enabled for use.
- * Please see P2-16 for functional descriptions of (J1 \ J3 \ J4), and P2-14 ~ P2-18 for functional descriptions of control terminal block.

 LS650M Specification of communication connector to the digital operation panel

1. LS650M exclusive communication connector as shown in the left picture.

LS650 Specification of communication connector for digital operation panel

2. RJ45 : A short connector as shown in the left photo shall be used instead of the general-purpose communication connector available in the market.

Control terminal block

LS650M control terminals – wiring addresses and sequence are shown follows:

Di	1 Di	3 Di5	DCN		0 <i>I</i>	Ai1	Ao	E	с 1	C	
SG- SG+	Di2	Di4 I	Di6 C	ОМ	Ai2	+10)V	AVG	Та	Tb)

LS650 control terminals – wiring addresses and sequence are shown follows:

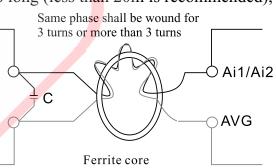
SG- SG+	Di1	Di	3 D	i5	Di7	DCI	M D	0	А	i1	А	.0	I	E	Т	`c	L
50 50	E	Di2	Di4	Di6	D	i8 C	COM	Aiź	2	+10	V	AV	′G	Та		Τb	,

※ Please use slender type "−" or "+" (#101 screwdriver) screwdriver to unscrew the terminal screws on the terminal block, then route the wire from the wiring opening below the terminal block to connect respective terminal and firmly fasten the terminal screws. (Please refer to P2-15 for cautionary points when wiring the terminal block is desired)

Wiring connection of control circuit terminals

Cautions for wiring the control circuit

Shielded & meshed wires shall be applied and grounded to wire the control circuit and connect terminal block with the mesh wires grounded. Improper wiring will cause serious interference, make operation abnormal and result in accident, personal injury and property loss.


- For safety concerns, select suitable specifications of wire gages for wiring connection in accordance with the Electric Code.
- ✓ For overseas customers, please follow the national regulations relevant to power wiring connection locally.
- ✓ Control circuit wiring: Wire to connect the control circuit wirings after separating the main circuit wiring from other power cable electricity wires; if interlacing the wiring connection is necessary, please make it in a cross connection of 90 degrees.
- Communication cables for all I/O control signals or remote digital operation editor must be separated from power cables of large current (power supply, motor, brake) as far as possible, and shall never be configured with these power cables in the same cable tray.
- As long as the indicating lamp of digital operation panel is on never attempt to connect or remove any cable.

Analog input terminals (Ai1, Ai2, AVG)

Connecting to a weak analog signal is easily interfered by external noise, therefore, the wiring length for connection shall not be too long (less than 20m is recommended),

and a shielding wire shall be used. Moreover, the peripheral meshed wires to the shield wires shall be well grounded; for a bigger induced noise, connection to AVG terminal can access a better effect.

When connecting the external analog signal output is desired, an error action may taken place due to the interference

produced from the analog signal output and the AC motor actuator; when encountered such a situation, connecting the external analog output side to a capacitor and a ferrite core can inhibit the noise. Such a connection is shown in the right figure:

Digital input terminals (Di1~Di8, COM)

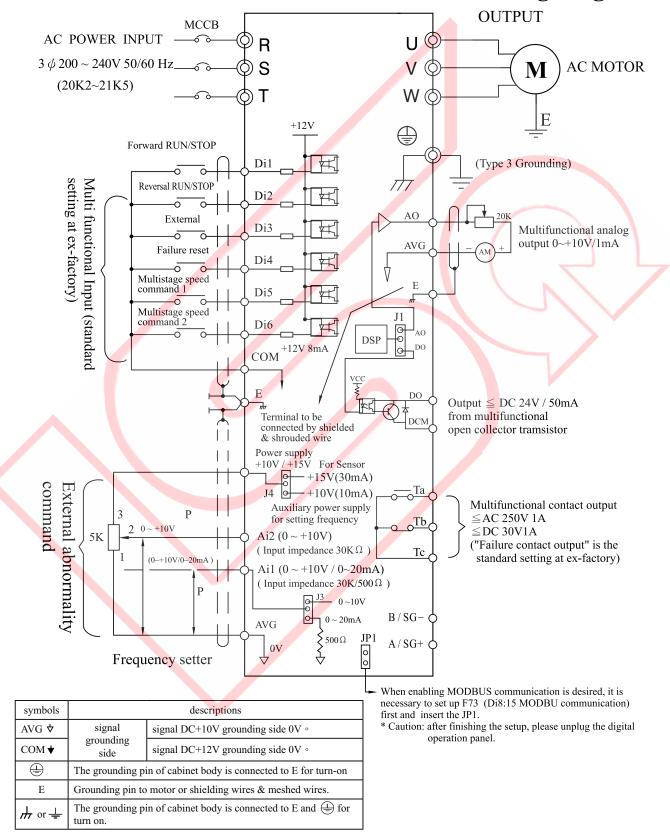
Multifunctional input terminals are characterized as dry contact that cannot be input any signal carrying voltage; when inputting signal to contacts for control, in order to prevent the occurrence of bad contact, contacts with high reliability in contacting the weak signal shall be used.

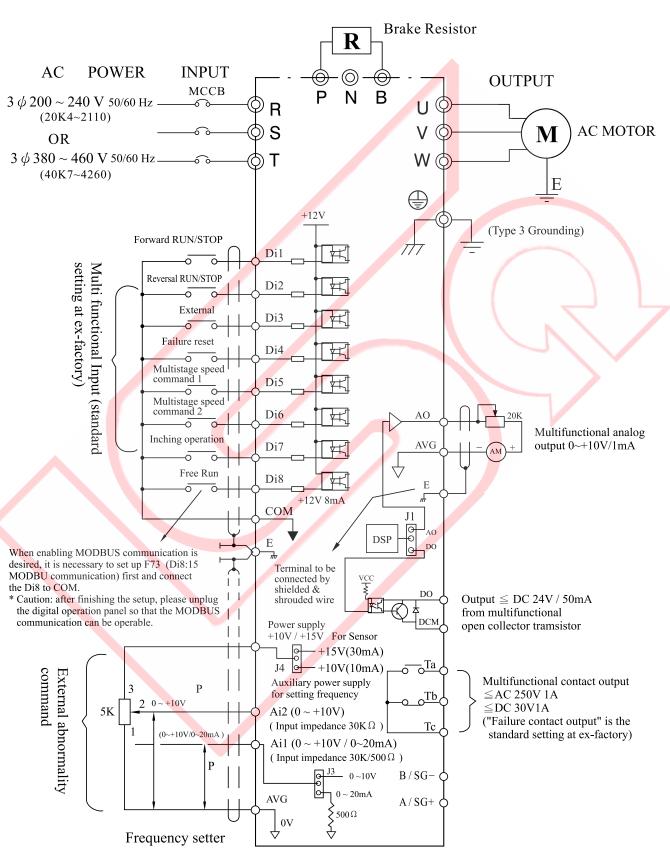
Do output (Do, DCM)

✓ When enabling the control relay is desired, a surge absorber or a flywheel diode shall be connected in parallel to both ends of exciting coil while attention shall be made to the correctness of polarity for connection.

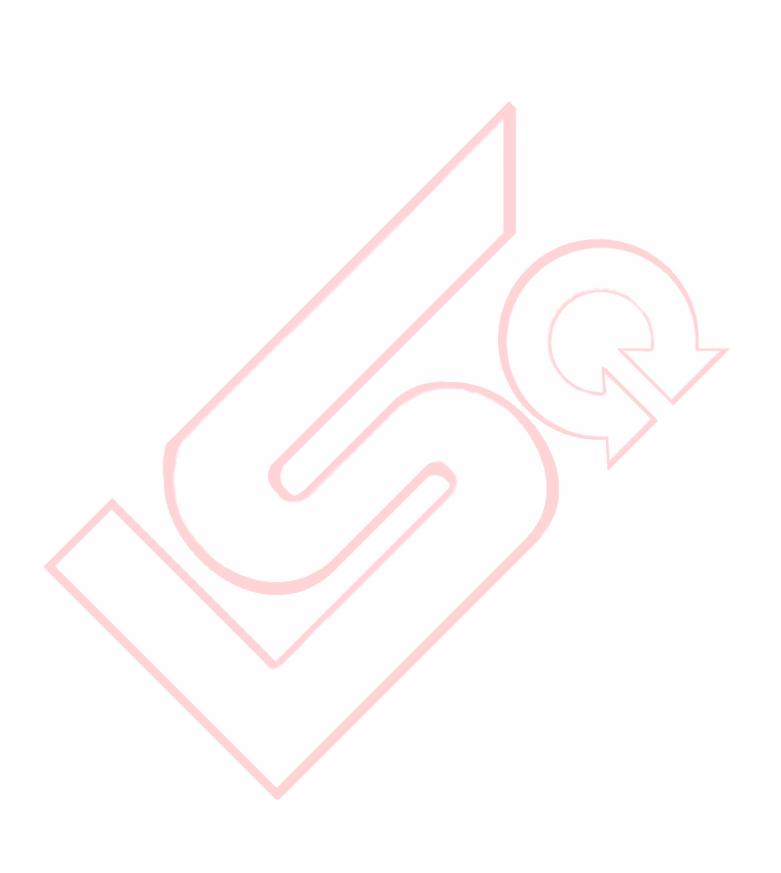
Summary descriptions for function of control terminals

* The following summary chart describes the standard setting at ex-factory for each control terminal.

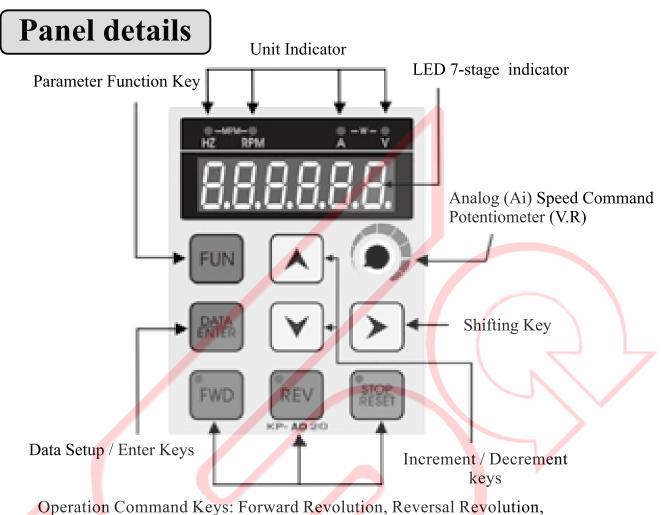

	minal ark	Designated function	Descriptions									
	Di1	FWD Command	Di1-COM ON for FWD running, and OFF for stop									
	Di2	REV Command	Di2-COM ON for REV running, and OFF for stop									
Multi	Di3	Enabled at external failure input (NC)	Enabled by an external failure signal ON to trip the ac drive to stop.									
functi	Di4	Failure reset	Di4 ON releases the status locked by the circuit protection action against failure.									
ona	Di5	Multistage speed command 1	Multistage speeds command 1 and 2 take the binary 2 Bit to execute 4-stage speeds control when enabled.									
lin	Di6	Multistage speed command 2	To take binary 2 Bit to execute 4-stage rpm control when enabled.									
out ter	Di7	Inching operation	To execute the inching frequency operation when enabled ON. LS650M has no interfaces for Di7 and Di8. (In MODBUS									
Multifunctional input terminals	Di8	Free Run	When enabled (ON) a stop command, ac drive stops outputting voltage immediately that leaves the motor to a free running and stop.									
	COM	Common terminal for digital input	Common terminal for multifunctional input terminals									
		+15V Sensor power supply	Power supply outputs DC+15V (maximum current 30mA) for sensor use									
Analo	+10V	+10V frequency signal setter power supply	Power supply outputs DC+10V (maximum current 10mA) for frequency setter use.									
g fre	Not	ote 1 : To output +10V or +15V is determined by the J4 setting; +10V is default output set at ex-factory.										
quen	AVG	Common terminal for frequency setup	Common standard potential terminal for frequency setup input signal (terminals Ai1 × Ai2 × AO).									
Analog frequency setup	Ai1	Analog voltage or current signals command	Input voltage DC 0~10V, input impedance $30K\Omega$ or input current DC 0~20mA; input impedance 500Ω , input voltage or current signal shall be selected by J3.									
	Ai2	Analog voltage signal command	Input voltage DC $0\sim 10V$, input impedance $30K\Omega$.									
Mul	AO	Analog output	Multifunctional analog output monitoring (DC 0~10V); reference standard potential terminal is AVG.									
Multifunc	DO	Frequency to reach	This contact will be enabled "ON" status when output frequency reaches the frequency setting (F76).									
tional output terminals	Not	te 2 : It can only have one choice, e and hardware J1. Software A0 set up by parameter F75.	either AO or DO, as the a synchronous setting out made by software D is to be established by parameters F63~F65 while software Do is to be									
utpu	DCM	Common terminal for DO output	Common terminal for the signal of multifunctional output terminals									
ut tern	Та		Contacts 1a and 1b will be enabled when triggered by the protection function against ac drive failure.									
nina	Tb Output at failure		* Ta-Tc is (ON) at failure. (contact is closed)									
uls	Tc		* Tb-Tc is (OFF) at failure. (contact is open)									
	Е	Terminal for grounding wire	Shrouded and shielded wires shall be exclusively used as the grounding wires.									



Multifunctional input terminals are dry-type contact that shall not be input any voltage-carrying signal source; please peruse the introduction of function to each terminal and use them correctly; any improper use may damage the ac drive.


Wiring diagram of control circuit terminal block

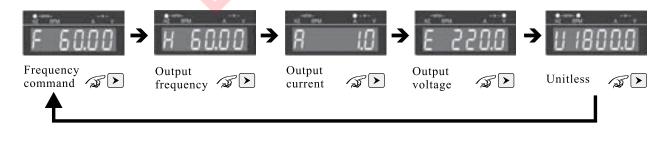
LS650M control circuit terminal block wiring diagram


LS650 control circuit terminal block wiring diagram

III Digital Operation panel

◆ Panel details	
 Introduction of function keys 	
Parameter setup mode	3-3
Control mode	3-4
 Status check menus of digital input ter 	minals 3-5

III -Digital Operation Panel-


ation Command Keys: Forward Revolution, Reversal Revolution Stop/Reset key and status indicator

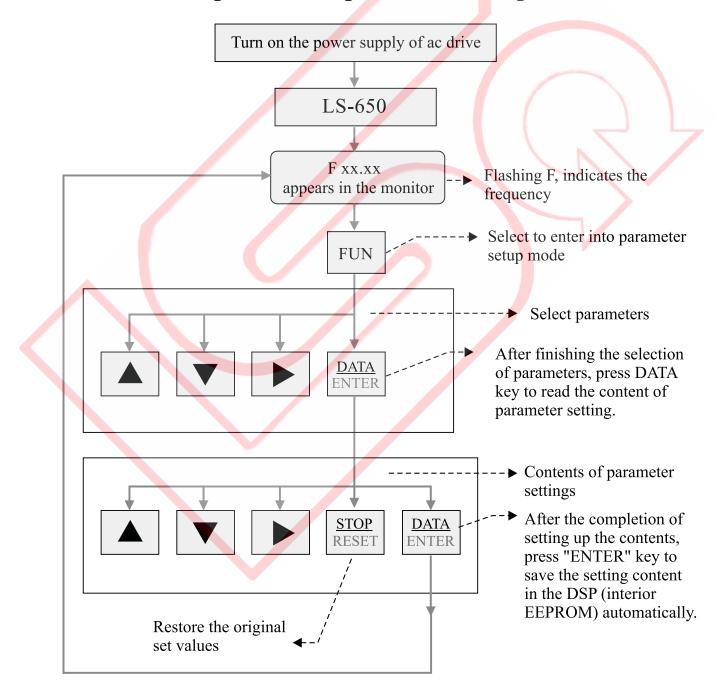
Functions of digital operation panel

The operation panel is able to perform the functions of running, shutdown, and frequency setup, monitoring the running status, parameter setup and failure display, etc.

Quick & cyclic display functions during operation

Each press of \triangleright key from digital operation panel is able to cyclically display the functions in the following order: Frequency command \rightarrow Output frequency \rightarrow Output current \rightarrow Output voltage \rightarrow Unitless.

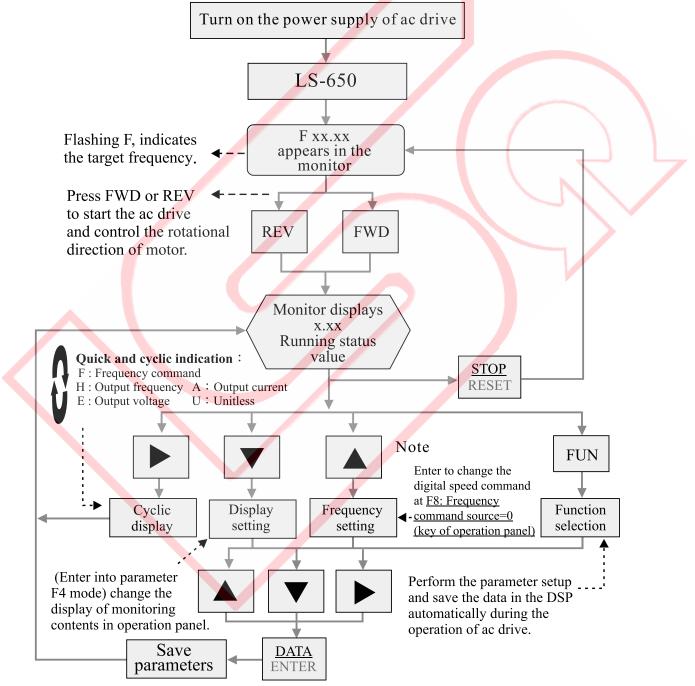
-Digital Operation Panel- III


Introduction of function keys

Classific -ation	Keys	Summary descriptions of functions
Parameter . Data keys	FUN	Press to enter into the parameter function mode.
leter keys	DATA	To read and write the set values of parameters.
	ENTER	To confirm and enter data, and save the data at DSP (interior of EEPROM) automatically.
	, ,	To shift the position of flashing cursor rightward to select the data for entry.
Shif	>	* Each depress of right-shift key will enable a cyclic display
ìt, increr		during the operation. \blacktriangleright F: Frequency command \rightarrow H: Output frequency \rightarrow A: Output currentU: Unitless \leftarrow E: Output voltage
ment,		Depress to increase the numerical values for parametric encoding and set values, etc.
Shift, increment, decrement keys		To perform the frequency setting under operation control mode by setting the F8: Frequency command source =0 to the digital operation panel.
nt ke		Depress to decrease the numerical values for parametric encoding and set values, etc.
sys		To enter into F4 to monitor variety of displays under the operation control mode.
	EWD	To give an operation command to the operation panel for executing a Forward revolution and turning on the LED lamp for indication.
Operatio	FWD	To serve as a function key to execute the stop running command when setting the revolving direction is not limited to the FWD command.
ion c	REV	To give an operation command to the operation panel for executing a Reversal revolution and turning on the LED lamp for indication.
n command keys		To serve as a function key to execute the stop running command when setting the revolving direction is not limited to the REV command.
ind ke	STOP	To execute the STOP running command.
ys	RESET	To serve as an anomaly-reset key when encountered an anomaly; press to retrieve the original set values during the parameter setup mode.
Speed command		Speed control for operation panel Ai (V.R) when F8 : Frequency command source = 1

Parameter setup mode

This mode is for changing the set values of internal parameters. Please use the Increment, decrement, and shift keys to change the parameter settings, and press the ENTER/DATA key to save the changed data in DSP (interior EEPROM) automatically and exit the setup mode. For more details of parameters, please see the "Summary of parameter settings" in the Appendix.



Control mode

The following flowchart is the flow process of control mode for the digital operation panel that describes control modes to control the operation and display the frequency commands, output frequency, output current, output voltage, failure content, failure records, etc.

Flow process for the control mode of digital operation panel

Note: If the rpm signal source is not under F8 (Frequency command source) = 0 : digital operation panel mode, then the digital RPM command will be ineffective.

Status check menus of digital input terminals

Accessible from the F4=11:Din (display the input status values from digital terminals)

To check the display of status values for digital terminals is available only when running the ac drive.

Example	Digital total	Di8	Di7	Di6	Di5	Di4	Di3	Di2	Di1	Digital terminals
No.	value	128	64	32	16	8	4	2	1	Digital bit value
1	0	OFF	Indicating value							
1	0	Х	Х	Х	Х	Х	Х	Х	Х	when enabled
2	42	OFF	OFF	ON	OFF	ON	OFF	ON	OFF	Indicating value
2	42	Х	X	32	Х	8	×	2	Х	when enabled
3	87	OFF	ON	OFF	ON	OFF	ON	ON	ON	Indicating value
5	07	X	64	Х	16	Х	4	2	1	when enabled
4	176	ON	OFF	ON	ON	OFF	OFF	OFF	OFF	Indicating value
4	170	128	Х	32	16	Х	X	Х	X	when enabled
5	199	ON	ON	OFF	OFF	OFF	ON	ON	ON	Indicating value
3	199	128	64	Х	Х	X	4	2	1	when enabled
6	216	ON	ON	OFF	ON	ON	OFF	OFF	OFF	Indicating value
0	216	128	64	Х	16	8	X	Х	Х	when enabled
7	222	ON	ON	OFF	ON	ON	ON	ON	OFF	Indicating value
		128	64	Х	16	8	4	2	Х	when enabled
8	255	ON	Indicating value							
0	255	128	64	32	16	8	4	2	1	when enabled

 Digital total value is to check if Di1 ~ Di8 digital terminal blocks operate normally.

Example 1 : Digital total value is 0, terminals $Di1 \sim Di8 \rightarrow$ are all OFF.

Example 2 : Digital total value is 42, terminals Di2 $\ Di4 \ Di6 \rightarrow$ are at ON state.

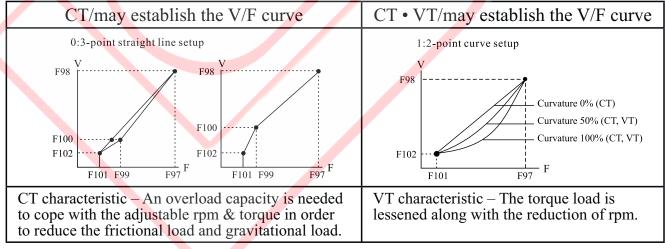
Example 3 : Digital total value is 87, terminals Di $1 \cdot Di2 \cdot Di3 \cdot Di5 \cdot Di7 \rightarrow are at ON state.$ Example 8 : Digital total value is 255, terminals Di $1 \sim Di8 \rightarrow are all ON$

* Take the Example 2 for a trial calculation: Digital bit value of Di2 is 2, digital bit value of Di4 is 8 and digital bit value of Di6 is <u>32</u>; therefore, the indication of <u>digital total value is 2+8+32=42</u>.

IV Test run

 Test run operation 	
♦ Basic parameters setup	4-3
♦ Fast operation control mode	4-4
• Fast operation control mode	4-4
• Control mode setup	
• Parameter setup for auto-operation control	4-6
• Multifunctional PID setup.	4-7
• Functional setup for constant-pressure wat	
pump (Sleep PID control)	4-8
MODBUS Communication setup	

Test run operation


Verification of application :

- * Before using the ac drive, please verify the user's machine and thereof applications:
 - CT(150%,60 seconds) : Extruder, conveyor and general machines, etc.
 - VT(120%,60 seconds) : Cooling fan, air blower and water pump, etc.

Parameters and applications indirect impact against the performance control.

Parameter (code)	Applications				
CT/VT selection	To select the max. torque and the overload capacity (CT)150% and (VT)120%				
Acceleration / deceleration time (F35~F50)	To adjust the acceleration / deceleration time				
S-curve characteristics (F51~F52)	To protect the impact from taking place when starting to accelerate / decelerate the speed.				
Jumping frequency (F77~F79)	To avoid the harmonic vibration during the mechanical operation.				
Analog filtration time(F58 F62)	To prevent a drastic fluctuation of analog input signal from taking place due to a generation of noise.				
Stall protection (F80~F85)	To protect the motor from stall or Err 6 (faulty overvoltage) when carrying a heavy load or performing a sharp acceleration / deceleration; generally, no change is needed when the initial values are effective.				

Characteristics of CT and VT :

Cautionary points for setup:

- In VT mode, the ac drive can be operative only along the 2-point curve with a curvature ranging 30% ~ 100% at an overload of 120%, 60 seconds together with the following parametric range limited:
 - (1) F 97 \geqq 50.00 Hz or 60.00Hz
 - (3) F 101 \leq 2.00 Hz,

- (2) F 98 \leq 200.0V or 220.0V / 380.0V or 440.0V (4) F 102 \leq 8.5V or 9.5V / 17.0V or 19.0V
- (5) F 103 ≥ 30.0%, limitation will be enabled when exceeding the range with Err=16 warning displayed at the same time.

Pre-start checkups:

- O After the completion of wirings and before supplying the power for test run, please go through the following checkups:
 - 1. Check if wirings are correct. [The input terminals R.S.T shall be wired to power supply while the output terminals U.V.W shall be connected to 3-phase induction motor]. Phase reversal at input/output terminals is not allowed.
 - 2. Look around the interior and all the wiring terminal blocks inside the ac drive to see if there are any wire chips of leads; make sure to remove them thoroughly.
 - 3. Check if terminals and screws, etc. components are firmly and tightly fastened?
 - 4. Check if there is short-circuit or grounding condition among the terminals?
 - 5. Check if the voltage of the input power supply is the same as the rated voltage of the ac drive.

200V class: Single/3-phase AC200 ~ 240V 50/60HZ 400V class: 3-phase AC380 ~ 460V 50/60HZ

Test run

- ◎ A factory default setting, an <u>open loop V/F control mode</u>, was made to the ac drive to set F7=0 that leaves the operation control method to <u>digital operation panel</u> and F8=1 that takes the <u>frequency command source</u> to control <u>the Potentiometer (V.R.)</u> <u>in operation panel</u>. Before supplying power to perform the test run, please turn the knob of <u>Potentiometer (V.R.)</u> counter-clockwise to the end position and then input the power supply. Please perform the test run in accordance with the following steps:
 - 1. Turn on the power supply.
 - 2. Verify the indicating status is shown the target frequency.
 - 3. Enter into the operation control mode (Press the FWD key to enter into the operation control for forward rotation).
 - 4. Input the speed command (rotate slowly the potentiometer knob in operation panel clockwise and perform the test run within 10Hz)
 - 5. Press STOP key to slow down and stop the motor.

Operation checklist:

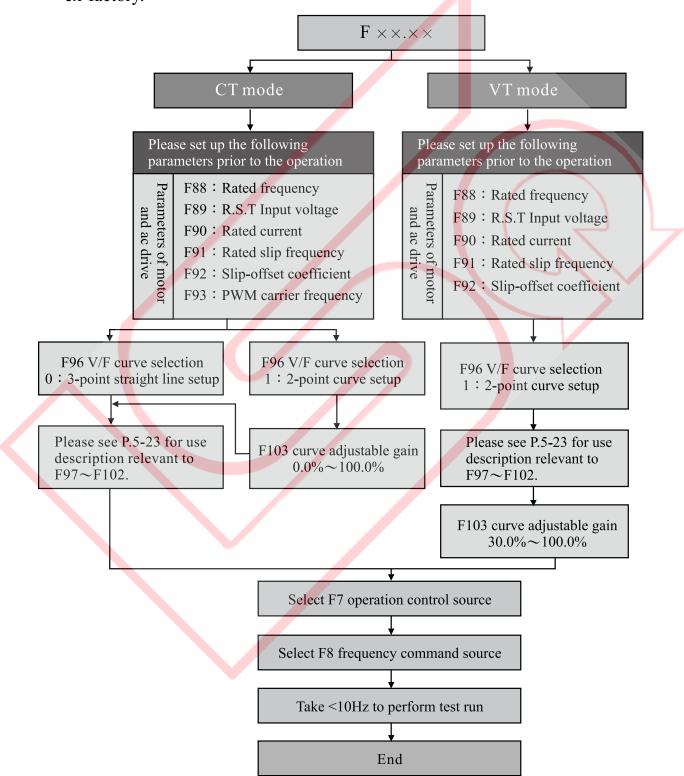
- © Check if motor runs in correct direction of rotation. (Interchange any two of the phase lines to change the motor's direction of rotation.)
- ◎ Check if motor runs smoothly?
- © Check if motor vibrates abnormally?
- O Check if acceleration and deceleration are smooth?
- Check if output load current is normal? (Press the ▼ key to access parameter F4=2: output current, or ➤ right-shift cyclic key to monitor the output load currents.)

Basic parameters setup

Parameter code	Description	Setting range	Unit	Ex-factory	setting	Page No.
F4	Selection of variables to be shown in the operation panel	0~16		1		P5-1
1 : Ou 2 : Ou 3 : Ou	equency command (F)5 : Normal voltage at 6 : Voltage at DC side tput current(A)tput voltage (E)8 : Ai1(V/mA)% 9 : Ai2(V)%	before start up(Vd	10 : PID output c) 11 : Input statu 12 : Water press 13 : Cycle No., 14 : Software ve 15 ~ 16 : Reser	s value at dig sure of water Stage No. ersion		nals
F7	Operation control source	0~1		C)	P5-3
0 : D	igital operation panel or MODBUS communi	cation 1:Dig	gital input terminal			
F8	Frequency command source	0~8		1		P5-3
1 : O 2 : A		Ai2 7 Ai2/MAX 8	5 : Ai1 > Ai2 / MI : PID : Digital terminal		ion & dec	
F11	Stop mode	0~2		1		P5-4
0 : Fi		mic shutdown	2: Dynam	ic +DC brak	e	
F14	Constraint of rotational direction	0~3				P5-5
		ward rotation only vard rotation availa	ble for negative bia	as		
F15	Lower limit of frequency (%F15≦F16)	0.00~300.00	Hz	0.0	00	P5-5
F16	Upper limit of frequency ($\%F15 \le F16$) 0.00~300.00 Hz 60.0 / 50.0		50.0	P5-5		
F17	Selection for Min. output frequency	0~1		C)	P5-6
0:0	Can be zero speed 1 : To set	t the Min. output fr	equency (F101)			
F35	Main speed, inching acceleration time	0.0~3000.0	Sec	10.0)	P5-7
F36	Main speed, inching deceleration time	0.0~3000.0	Sec	10.0)	P5-7
F67	Di1 Di2 setup	0~2		0		P5-14
	.1(FWD/STOP) • Di2(REV/STOP) 1 • Di1 wire shutdown: Di3(FWD/REV), Di2(Stop), I	(RUN/STOP) , D Di1(Running), disa		natically at th	he same ti	me.
F80	Stall protection setup	0~31		7		P5-19
bit4 : bit1 :	AVR Voltage-regulating function bit3 : Pr	otection function F otection function F	84 bit2 : Protect 81	ion function	F83	
F81	Stall voltage setup for deceleration	33 0.0~400.0 660.0~800.0	Vdc	380. 760.		D5 20
F82	Stall voltage setup for acceleration	30.0~200.0	%	170.0		P5-20
F83	Stall current setup for operation	30.0~190.0	%	160.0		
F84	Current level for electronic thermal relay	1.01~2.00	F90	1.50		P5-21
F85					15-21	
$\int (I^{2}_{A(pu-1)})$	$dt (I^* OL^2-1) \times TOL$					
F88	Rated frequency	40.00~70.00	Hz	60.00	50.00	
F89	RST input voltage (rms)	150.0~255.0 300.0~510.0	Vac	220.0 440.0	200.0 380.0	P5-21
F90	Rated current (rms)	0.1~(F95×1.3)	А	F9.	5	
1 7 0						

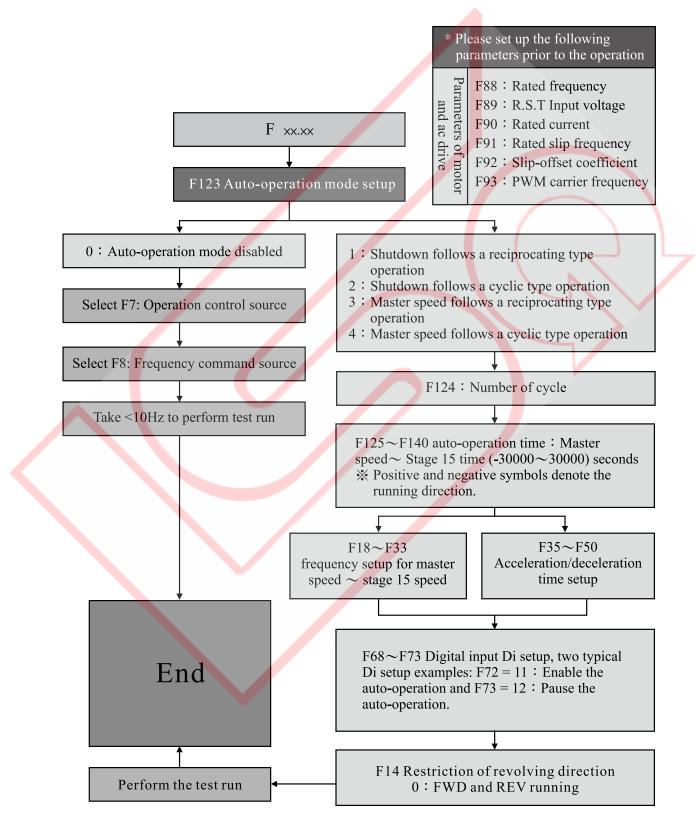
Fast operation control mode

Fast operation control mode

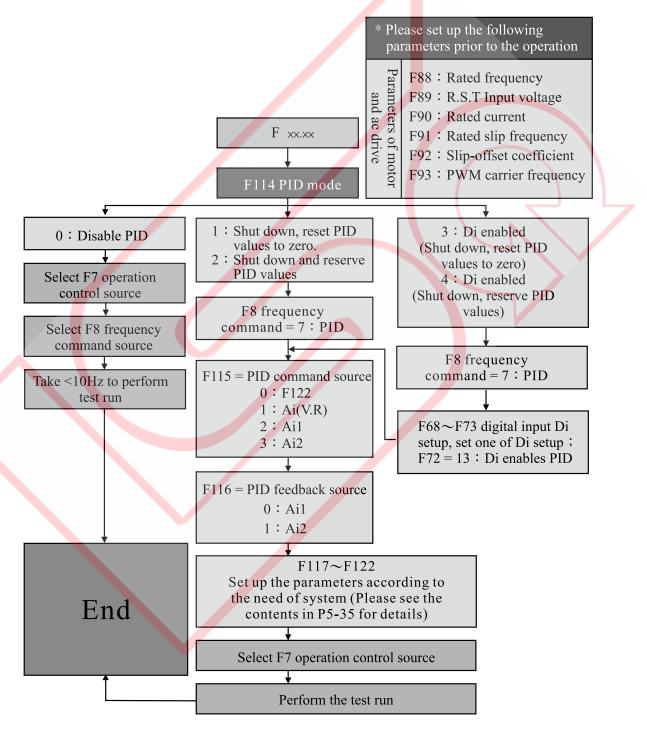

- © There are several operation control methods applicable to the ac drive for thereof startup operation. You can use the following operation methods to simply and quickly start the ac drive.
- \bigcirc There are two primary operation control parameters to start the operation of ac drive: The first one is the <u>F7: Operation Control Source</u> and the other one is <u>F8: Frequency</u> <u>command source</u>. Please see the table below for description of operation.

Parameter functions	Description of operating procedures	Ex-factory setting	Page No.
F7: Operation control sou	rce		
0 : Digital operation panel (Or MODBUS communication)	Press FWD key after the display of F xx.xx Enter into the FWD operation mode *Please pay attention to the forward & backward rotating direction of motor when performing the test run.*		P5-3
1 : Digital input terminal	Terminal Di1 /ON \rightarrow FWD (Indicator ON) operation \rightarrow OFF/Stop.		P5-3 P5-14
F8 : Frequency command	source		
0: Digital operation pane1: Operation panel Ai input (V.R)	 Frequency changing mode is accessible by pressing the ▲ key during the operating state. To perform the speed control from the (V.R) potentiometer from the operation panel. 		
2: Ail input (+10V/20mA)	To perform the speed control by inputting $0 \sim \pm 10 V/0 \sim 20 mA$ to analog Ail terminal.		
3 : Ai2 input (+10V)	To perform the speed control by inputting 0~+10V to analog Ai2 terminal.		
4 : Ai1+Ai2	To perform the speed control by making an addition operation of two analog signals from Ai1 and Ai2 analog terminals at the same time.	1	P5-3
5 : Ai1 \ Ai2/MAX	To take the maximum value from two sets of analog signals, Ail and Ai2, to perform the operation control.		
6 : Ai1 \ Ai2/MIN	To take the minimum value from two sets of analog signals, Ai1 and Ai2, to perform the operation control.		
7:PID	To execute the external analog signals for PID feedback control.		
8 : Digital terminals for speed acceleration or deceleration	To perform speed acceleration and deceleration control by inputting signals to the digital input terminals.		

Control mode setup

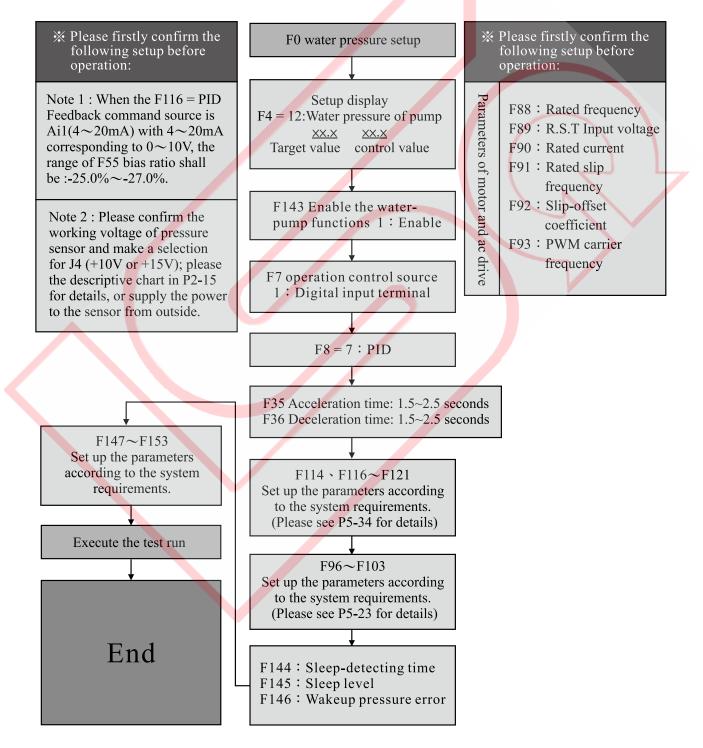

LS650 is categorized to a simple V/F voltage vector control in possession of slipoffsetting function and V/F curve setting.

LS650 has been setup a CT mode or VT mode according to the need of user at ex-factory.

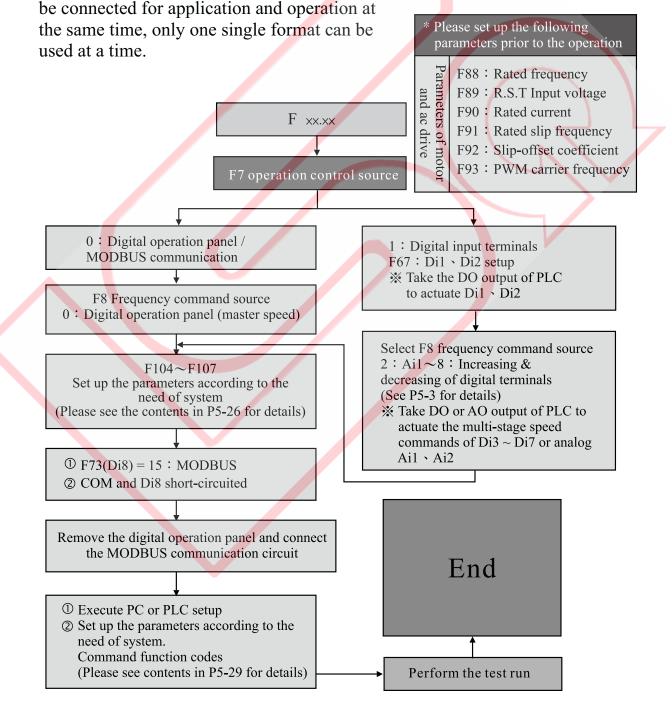

Parameter setup for auto-operation control

The auto-operation mode will leave the functions of F7: Operation control source and F8: Frequency control source inoperative when enabled because its priority is higher than any other frequency commands.

Multifunctional PID setup


- ♦ A PID control technology is introduced to apply the advanced digital coding technology by combining , tuning and consisting of three aspects of P (Proportion), I (Integration) and D (Differential).
 - When PID control module is in use; generally, both acceleration & deceleration times of F35 and F36 are set less than 2.0 seconds.

Setting the functions of constant-pressure water pump (Sleep PID control)


• A comparison between the feedback signal of sensor and the set value will be made according to the variation of system pressure to control the output frequency, perform the constant-pressure function, and control the functions to stop working at no water consumption, make up water for water leakage and stop working when running out of water running out of water.

When using the PID control module, the typical setting of F35 & F36 for acceleration & deceleration time are less than 2.0 seconds.

MODBUS communication setup

- Ac drive and PC or PLC is serially connected for communication so that remote monitoring is accessible to the user.
- When MODBUS is enabled to LS650M, it is necessary to set F73(Di8: 15 MODBUS communication) and insert the JP1 (JP1 is a function of Di8) (Note 1)
- When MODBUS is enabled to LS650, it is necessary to set F73(Di8: 15 MODBUS communication) and connect Di8 to COM. (Note 1)
- ※ (Note 1) : The digital operation panel is configured an internally exclusive RS-485 communication format; and when performing the external (SG-, SG+) MODBUS communication control in different communication format is desired, they cannot

V Description of parameter functions

♦ Water pump setup 5-1
◆ Display setup of operation panel 5-1
◆ Operation control parameters 5-3
◆ Speed limit 5-5
Multi-stage speed frequency
command setup5-6
◆ Acceleration/deceleration time 5-7
◆ Analog input 5-8
Analog (AO) output5-12
◆ Digital input
◆ Digital (Do) output 5-17
◆ Jumping frequency 5-18
◆ Motor protection setup 5-19
 Motor nameplate and Drive
parameter setting5-21
◆ V/F curve setup 5-23
◆ Communication setup 5-26
◆ MODBUS communication5-27
◆ Failure record
◆ External PID5-34
◆ Auto operation function 5-36
◆ Retrieval parameters 5-38
◆ Water pump function5-39

V -Description of parameter functions-

Water pump setup

□ □ <u>Signify that setting the function</u> <u>during operation is executable.</u>

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F0	Water pressure set values	0.0~10.0	Kg/cm2	2.0
	.1 .				

• To set up the target pressure value.

$\times \qquad F1 \qquad \begin{array}{c} \text{Setup to activate terminal after} \\ \text{restoring the power supply} \end{array} \begin{array}{c} 0 \\ 0 \\ -1 \end{array} 0 \end{array}$

- 0 : Direct activate When set <u>F7 (operation control source)</u> = <u>1 : digital</u> <u>input terminal</u> for control, the operation control terminal (Di1 or Di2) will be normal close (ON) while the ac drive will be activated to run after inputting the power supply or restoring the power supply.
- 1 : Command terminal reset and then activate When set <u>F7 (operation control source)</u> = 1 : digital input terminal for control, the operation control terminal (Di1 or Di2) will be normal close (ON) while the command terminal shall be re-activated (off→ON), then the ac drive follow to run after inputting the power supply or restoring the power supply.

Display setup of operation panel

displayed in operation panel	0	F4	Select the variables to be displayed in operation panel	0~16		1
------------------------------	---	----	---	------	--	---

* Operation panel has been equipped with 7-staged display window and LED lamps to monitor the running status data, 15 data in total, of ac drive during the standby or operation modes.

Set value	Functions	Description of function	Related parameters
0	Frequency command(F)	Display the frequency set value.	
1	Output frequency(H)	Display the output frequency.	
2	Output current(A)	Display the load of current output (U,V,W) to drive motor.	
3	Output voltage(E)	Display the output voltage (U,V,W) (rms)	
4	Unitless (U)	To monitor the functions of motor rpm or machine rpm, etc.	F5
5	Normal voltage at DC side(Vdc)	Display the DC voltage of capacitor running on capacitor.	
6	Voltage at DC side before startup (Vdc)	The DC voltage at DC bus of capacitor before startup.	

-Description of parameter functions- \boldsymbol{V}

Set value	Functions	Description of function	Related parameters
7	Digital operation panel Ai (%)	• Able to display the percentage % of analog input voltage.	F8=1
8	Ai1(V/mA)%	 Able to monitor the noise voltage generated from the wiring and use this voltage to set up the bias voltage 	F8=2
9	Ai2(V)%	to avoid unnecessary noise interference.	F8=3
10	PID(%)	Display the PID-controlled output value in %.	
11	Input status value at digital terminals	Able to monitor the control of digital input terminals and access a real-time numerical display of status during the standby and running modes (please see P3-5 for status monitoring).	F67~F73
12	Water pressure of water pump	Display the water pressure of water pump in kg/cm ² . Display method: (Target value) xx.x xx.x (Control value)	F0
13	Number of cycles, number of stages	To display the travel designated to the number of cycle and the number of stage from automatic operation mode. • Display the number of cycle in a decimal system (0~9) • Display the number of stage in a hexadecimal system. (0123456789RbcdEF)	F124 F125~F140
14	Software version	To display the version number of software.	
15~16	Reserved	Reserved	

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
\bigcirc	F5	Unitless display of folds	0.01~300.00		30.00

- This function can be applied to monitor the motor RPM or machine (gear ratio output) RPM.
- To display the F4=4: Unitless (U) indicating value according to the user-set frequency × (F5) folds of display.

$\bigcirc F6 \qquad \text{Display of filtration time} 0~13$	6
--	---

- This function is able to filter out the variation of the low-bit display values so as to read a further stable display of the status data.
- This function is to be performed by the built-in Low Pass Filter (LPF). Please do not set a long time to this parameter for it will affect the response speed in displaying the data.

Operation control parameters

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F7	Operation control source	0~1		0

※ Operation control command must be given first before starting the ac drive to initiate its operation. By then, you can select the operation control source from either digital operation panel or digital input terminals.

O:Digital operation panel – The digital operation panel shall control the ac drive's start of operation, forward rotation, reversal rotation and stop of operation; or a MODBUS communication protocol system shall be applied to execute the serial communication control (the use of F73:Di8-15 terminals are needed to turn on the MODBUS system).

1:Digital input terminals – Digital input terminals (F67) shall control the ac drive's start of operation, forward rotation, reversal rotation and stop of operation.

X Fro Frequency command source 0~8	×	F8	Frequency command source	0~8	1
------------------------------------	---	----	--------------------------	-----	---

- This parameter is the frequency command source for the drive motor of ac drive. The following nine options of frequency command sources and (F123) auto operation mode are available for selection in accordance with the configurative requirements of control system.
- The sequence of priority for frequency command source is: Auto operation> Inching>Di enables Ai1>Speed of designated stage>F8 frequency command source.
 - 0: Digital operation panel (main speed) To be set and controlled by the increment and decrement keys in digital operation panel.
 - <u>1: Operation panel Ai input (V.R)</u> To be controlled by the DC 0~5V signal from Voltage Regulator (V.R) in operation panel.
 - <u>2 : Ail input (+10V/20mA)</u> To be controlled by the input analog voltage signal DC 0~+10V (or DC 0~20mA) from analog input terminal Ail.
 - **3**: Ai2 input (+10V) To be controlled by the input analog voltage signal DC 0~+10V from analog input terminal Ai2.
 - <u>4 : Ai1+Ai2</u> To be controlled by adding the two input signal values of input analog voltage and analog voltage (or current) from both analog input terminals Ai1 and Ai2. (Setting the function of F14:3, the negative bias is able to make a reversal rotation, control by addition & subtraction is available)
 - **5**: Ai1 \cdot Ai2/MAX To take the maximum value for operation control from two sets of analog signal input at both Ai1 and Ai2.

- <u>6 : Ai1 · Ai2/MIN</u> To take the minimum value for operation control from two sets of analog signal input at both Ai1 and Ai2.
- 7: PID (%) To execute the external analog feedback signal and input it into the PID feedback control module. (Please select the source terminal of PID desired value and PID feedback value from parameter setup, i.e., the PID parameter group F114 ~ F122). (When set to enable the function of F11=3: Reversal revolution is available at negative bias, performing the negative PID% control is available.)
- <u>8 : Digital terminal for increasing/decreasing</u> To input signal to digital input terminal for controlling the increasing / decreasing of master speed.

×	F9	Braking duration before start	0.0~120.0	Second	0.0
---	----	-------------------------------	-----------	--------	-----

This parameter is to set up time duration of DC dynamic braking enabled when ac drive is started, ac drive will start its running only after the entered time duration elapsed. An entry of minimum value "0" to the duration will disable the pre-braking function.

A Diaking current before start 0.0~100.0 70 J0.0	×	F10	Braking current before start	0.0~100.0	%	30.0
--	---	-----	------------------------------	-----------	---	------

This parameter is to set the percentage of the DC braking current output before the operation of the ac drive. A minimum set value, i.e., "0", will deny the output brake energy, and will be regarded as a control to trigger a delay for the start of operation. F9 setting shall govern the time span of delay, and the braking current percentage shall be based on the (F95) rated current of ac drive.

I I I I I I I I I I I I I I I I I I I	×	F11	Stop mode	0~2		1
---------------------------------------	---	-----	-----------	-----	--	---

- To select an appropriate stop mode in accordance with the operational requirements of machine & equipment.
 - 0: Free run stop An input of stop signal will trigger the ac drive to turn off its drive signal immediately and enable an open-circuit state between the ac drive and the motor so that motor can free run from idling to stop.
 - <u>1</u>: Dynamic stop Decelerate and stop the motor according to speed rate of the deceleration time.
 - 2: Dynamic+DC brake Slow down the speed according to the speed rate of deceleration time; DC brake action is enabled when the output frequency is reduced to zero speed; thus the occurrence of coasting operation phenomenon can be avoided after stopping the motor.

×	F12	Stopping & braking time	0.0~120.0	Second	0.0
×	F13	Stopping & braking current	0.0~100.0	%	30.0

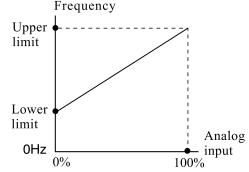
※ Do not enter a minimum value "0" to set up the stopping & braking time and the stopping & braking current; an entry of "0" will leave the time and braking energy inactive.

V -Description of parameter functions-

Speed limit

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F14	Restriction of rotating direction	0~3		1

- Please use this functional parameter to select and restrict the rotating direction of motor when motor is restricted its rotating direction to forward rotation or reversal direction required for the concern relevant to the operation of mechanical system.
- 0 : Forward / Reversal rotation available
 1 : Forward rotation only
- **2** : Reversal rotation only **3** : Reversal rotation at negative bias available
- When the <u>3 : Reversal rotation at negative bias available</u> is selected, there are six types of analog input signal status at parameter F8: Frequency command source available to set up the negative bias frequency. When the analog input signal value is working on the bandwidth of negative bias frequency, the motor is rotating in reversal direction for operation; and the motor will rotate in forward direction when the signal value is working on the positive frequency bandwidth. [For details of analog signal shifting setup, please see each shifting parameter group (F53, F55, F59) of analog signal]
- Select 3: Reversal revolution is available at negative bias, F8 = 4: Ai1 + Ai2 addition & subtraction for operational control is available, and F8 = 7: PID% is taken to perform negative PID% control.



* **Warning :** The direction of rotation set to ac drive is not necessarily the same as the motor's direction of rotation. Each motor has different polarity, so please pay attention to the danger that may be resulted from the reversal rotation.

×	F15	Lower limit of frequency	0.00~300.00	HZ	0.00
×	F16	Upper limit of frequency	0.00~300.00	HZ	60.00 50.00

- An appropriate setting of upper and lower frequency limit is able to truly protect your valuable mechanical system from damage caused by speeding or idling operation when received a wrong entry of speed command from the operator.
- * The operating range for the analog input frequency command and PID frequency command shall be 0% corresponding to the (F15) lower limit of frequency and 100% corresponding to the(F16) upper limit of frequency.

* Must satisfy the condition $F16 \ge F15$

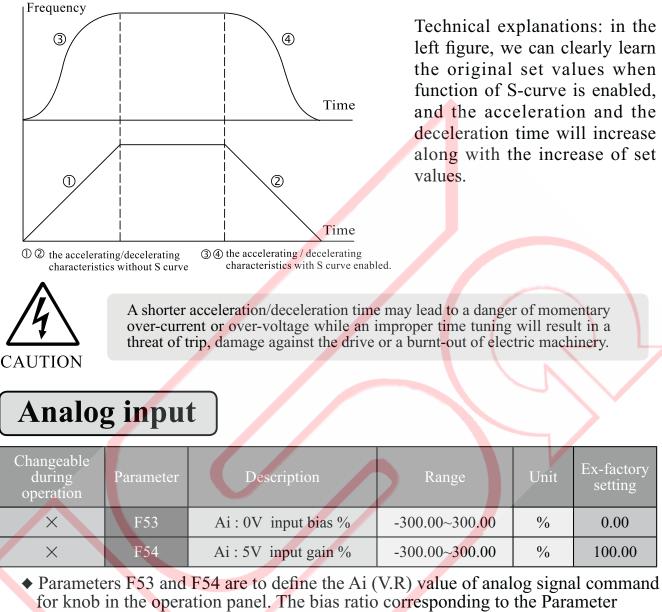
-Description of parameter functions- V

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F17	To select the minimum output frequency	0~1		0

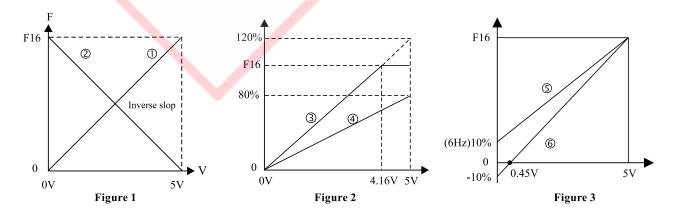
- 0: For zero fast when set value F15<F101 and input frequency command <F101 set value, the output frequency is a zero speed; if the set value F15 ≥F101 with the operation command enabled, then the F15 set value will be enabled for operation.
- 1: For F101 lowest output frequency hypothesis when set value F15< F101, input frequency command <F101 set value, take the F101 set value to output for operation.
- * When F15≥F101, the frequency of lower limit will be output as the minimum output frequency for performing the operation.

Multi-stage speed frequency command setup

m	-	e speed command erminals	Multi-stage command 4	Multi-stage command 3	Multi-stage command 2	Multi-stage command 1	Setting range	Unit	Ex-factory setting
\bigcirc	F18	Master speed	OFF	OFF	OFF	OFF	0.00~300.00HZ	HZ	5.00
\bigcirc	F19	Speed at stage1	OFF	OFF	OFF	ON	0.00~300.00HZ	HZ	5.00
\bigcirc	F20	Speed at stage2	OFF	OFF	ON	OFF	0.00 <mark>~30</mark> 0.00HZ	HZ	10.00
\bigcirc	F21	Speed at stage3	OFF	OFF	ON	ON	0.00~ <mark>300</mark> .00HZ	HZ	15.00
\bigcirc	F22	Speed <mark>a</mark> t stage4	OFF	ON	OFF	OFF	0.00~3 <mark>00</mark> .00HZ	HZ	20.00
\bigcirc	F23	Speed at stage5	OFF	ON	OFF	ON	0.00~ <mark>30</mark> 0.00HZ	HZ	30.00
0	F24	Speed at stage6	OFF	ON	ON	OFF	0.00~300.00HZ	HZ	40.00
0	F25	Speed at stage7	OFF	ON	ON	ON	0.00~300.00HZ	HZ	50.00
0	F26	Speed at stage8	ON	OFF	OFF	OFF	0.00~300.00HZ	HZ	0.00
0	F27	Speed at stage9	ON	OFF	OFF	ON	0.00~300.00HZ	HZ	0.00
\bigcirc	F28	Speed at stage10	ON	OFF	ON	OFF	0.00~300.00HZ	HZ	0.00
\bigcirc	F29	Speed at stage11	ON	OFF	ON	ON	0.00~300.00HZ	HZ	0.00
\bigcirc	F30	Speed at stage12	ON	ON	OFF	OFF	0.00~300.00HZ	HZ	0.00
\bigcirc	F31	Speed at stage13	ON	ON	OFF	ON	0.00~300.00HZ	HZ	0.00
\bigcirc	F32	Speed at stage14	ON	ON	ON	OFF	0.00~300.00HZ	HZ	0.00
\bigcirc	F33	Speed at stage15	ON	ON	ON	ON	0.00~300.00HZ	HZ	0.00


- ON and OFF shown in the table express the commands given to open (OFF) or close (ON) the circuit at external terminals.
- ◆ Under the operation mode of multi-stage rpm, compilation to select the stage and rpm for operation (16 stages of speed the utmost) through the multi-functional input terminals (F68 ~ F73) is available while the compilation shall be made in a binary system of 4-bit (please see the table above).

F34 Inching speed 0.00~300.00HZ HZ 6.00


Acceleration/deceleration time

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
0	F35	Master speed (inching) with No stage 8 speed of acceleration time	0.0~3000.0	Second	10.0
0	F36	Master speed (inching) with No stage 8 speed of deceleration time	0.0~3000.0	Second	10.0
\bigcirc	F37	Acceleration time of stage 1,9	0.0~3000.0	Second	10.0
\bigcirc	F38	Deceleration time of stage 1,9	0.0~3000.0	Second	10.0
\bigcirc	F39	Acceleration time of stage 2,10	0.0~3000.0	Second	10.0
\bigcirc	F40	Deceleration time of stage 2,10	0.0~3000.0	Second	10.0
\bigcirc	F41	Acceleration time of stage 3,11	0.0~3000.0	Second	10.0
\bigcirc	F42	Deceleration time of stage 3,11	0.0~3000.0	Second	10.0
0	F43	Acceleration time of stage 4,12	0.0~3000.0	Second	10.0
0	F44	Deceleration time of stage 4,12	0.0~3000. <mark>0</mark>	Second	10.0
0	F45	Acceleration time of stage 5,13	0.0~3000. <mark>0</mark>	Second	10.0
0	F46	Deceleration time of stage 5,13	0.0~3000.0	Second	10.0
0	F47	Acceleration time of stage 6,14	0.0~3000.0	Second	10.0
0	F48	Deceleration time of stage 6,14	0.0~3000.0	Second	10.0
0	F49	Acceleration time of stage 7,15	0.0~3000.0	Second	10.0
0	F50	Deceleration time of stage 7,15	0.0~3000.0	Second	10.0
×	F51	Acceleration S curve	0.0~100.0	%	0.0
×	F52	Deceleration S curve	0.0~100.0	%	0.0

- The long or short time duration set to acceleration or deceleration determines the increasing or decreasing rate of output frequency. F88: rated frequency is the reference frequency for the acceleration or deceleration time.
- Variation of setting in S-curve can effectively lessen the load and mitigate the impact phenomenon received at start and stop of ac drive.
- Function of S-curve is only applicable to F8=0 : digital operation panel (master speed) and multi-stage rpm commands.

for knob in the operation panel. The bias ratio corresponding to the Parameter F53/0V may be applied to set up a set of negative bias to avoid noise interference at 0V, or for the application by other control; Parameter F54/5V is a gain frequency with its maximum output value limited by the F16 upper-limited frequency. (Please see the following examples for six types of basic curve).

V -Description of parameter functions-

The set of										
	Curve ①	Curve ②	Curve ③	Curve ④	Curve (5)	Curve (6)				
F8 frequency command source	1:Ai/(V.R)	1:Ai/(V.R)	1:Ai/(V.R)	1:Ai/(V.R)	1:Ai/(V.R)	1:Ai/(V.R)				
F16 Upper limit of frequency	60HZ	60HZ	60HZ	60HZ	60HZ	60HZ				
F53 operation panel Ai:0V bias ration	0.0%	100%	0.0%	0.0%	10%	-10%				
F54 operation panel Ai:5V gain ratio	100%	0.0%	120%	80%	100%	100%				

* Please refer to Figure 1, 2 & 3 and see the description of parameters in the table below :

- Ai max. output frequency = (F16) frequency of upper limit \times (F54) gain ratio.
- ♦ Frequency at positive bias = (F16) frequency of upper limit × (F53) bias ratio.
 For example: curve ⑤ = 60Hz ×10%=6Hz
- ♦ Negative bias voltage = [5V(Ai) ÷ (F53 bias ratio + F54 gain ratio)] × F53 bias ratio For example: curve (6) = [5V(Ai) ÷ (10% + 100%)] × 10% = 0.45V (positive and negative symbol shall be ignored for operation)

• Operating voltage (V) = $\frac{\text{The max. voltage } \times \text{ The max. operating frequency}}{\frac{1}{2}}$

The upper limit of frequency × gain ratio

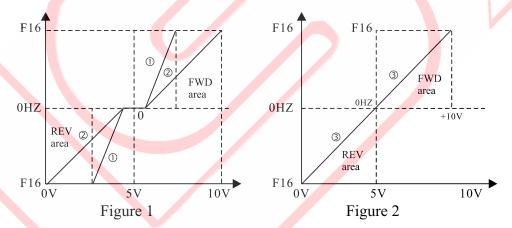
Ex. : Curve ③
$$\frac{5V \times 60Hz}{60Hz \times 120\%} = 4.16V$$

Ex. : Curve ④
$$\frac{5V \times 48Hz}{60Hz \times 80\%} = 5V$$

- The max. voltage \times The max. operating
- Gain ratio = $\frac{1}{1}$ The upper limit of frequency x operating voltage

Ex. : Curve
$$3 \frac{5V \times 60Hz}{60Hz \times 4.16V} = 120\%$$

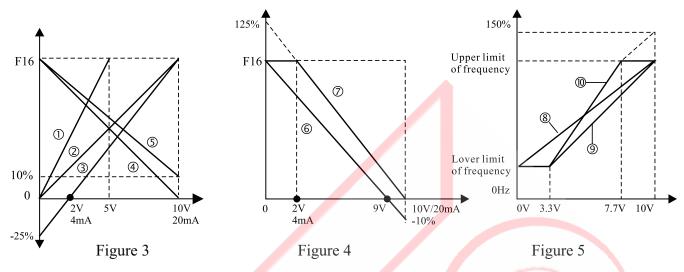
Ex. : Curve (4)
$$\frac{5V \times 48Hz}{60Hz \times 5V} = 80\%$$


-Description of parameter functions- V

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F55	Ai1:0V Input bias %	-300.00~300.00	%	0.00
×	F56	Ai1:10V Input gain %	-300.00~300.00	%	100.00
×	F57	Ai1: Insensitive area (Dead Band)	0.00~85.00	%	0.00
×	F58	Ai1: Filtration time setup	0.01~5.00	Second	0.30
×	F59	Ai2:0V Input bias %	-300.00~300.00	%	0.00
×	F60	Ai2:10V Input gain %	-300.00~ <mark>30</mark> 0.00	%	100.00
×	F61	Ai2: Insensitive area (Dead Band)	0.00~85.00	%	0.00
×	F62	Ai2: Filtration time setup	0.01~5.00	Second	0.30

◆ The functional commands of this parametric group are to define the frequency (gain frequency) corresponding to the maximum value (10V or 20mA) of analog signal while the output value of this gain frequency is restricted by the frequency of upper limit.

♦ Ai1 and Ai2 have the same mode of operation; however, 0 ~ 10V/0~20mÅ is selectable to Ai1 with operation selected by J3 while 0~10V is the only option for Ai2.


♦ F57 insensitive band voltage setup can effectively keep away the noise interference at 0V, but fail the actuator to stop operation correctly that leads to motor swinging operation between forward and reversal rotations.

* Please refer to figures above and see the description of parameters along different curves in the table below

	Curve ①	Curve ②	Curve ③
F8 Frequency command source	2:Ai1/10V	2:Ai1/10V	2:Ai1/10V
F14 Restriction of rotating direction	3: REV available at bias	3: REV available at bias	3: REV available at bias
F16 Upper limit of frequency	60HZ	60HZ	60HZ
F55 0V: bias ratio	-200%	-100%	-100%
F56 10V: gain ratio	200%	100%	100%
F57 Insensitive band	10%	10%	0%
F58 Filtration time setup	0.30 Second	0.30 Second	0.30 Second

V -Description of parameter functions-

* Please refer to Figure 3 and see the description of parameters along different curves in the table below :

	Curve ①	Curve 2	Curve ③	Curve ④	Curve (5)
F8 Frequency command source	2:Ai1/10V	2:Ai1/10V	2:Ai1/10V	2:Ai1/10V	2:Ai1/10V
F16 Upper limit of frequency	60HZ	60HZ	60HZ	60HZ	60HZ
F55, F59 0V(0 mA): bias ratio	0.0%	0.0%	-25%	100%	100%
F56, F60 10V(20 mA): gain ratio	200%	100%	100%	0.0%	10%

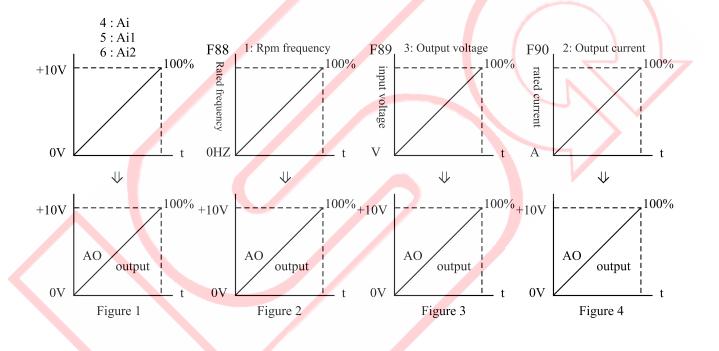
* Please refer to Figure 4 and Figure 5 and see the description of parameters along different curves in the table below :

	Curve 6	Curve 🗇	Curve ⑧	Curve (9)	Curve 🛈
F8 Frequency command source	2:Ai1/10V	2:Ai1/10V	2:Ai1/10V	2:Ai1/10V	2:Ai1/10V
F15 Lower limit of frequency	0.0HZ	0.0HZ	20HZ	20HZ	20HZ
F16 Upper limit of frequency	60HZ	60HZ	60HZ	60HZ	60HZ
F55, F59 0V(0 mA): bias ratio	100%	125%	0.0%	-50%	-75.18%
F56, F60 10V(20 mA): gain ratio	-10%	0.0%	100%	100%	150%

- Negative bias ratio = lower limit of frequency ÷ [(upper limit of frequency lower limit of frequency) ÷ gain ratio]
- ♦ Negative bias voltage = [10V ÷ (negative bias ratio + gain ratio)] × negative bias ratio
- Frequency voltage = [upper limit of frequency × (gain ratio + negative bias ratio)] ÷ 10V (positive, negative symbols are not for operation)
- Operating voltage (V) = upper limit of frequency \div frequency voltage
- ◆ Upper limit of frequency / full voltage = increased voltage + negative bias voltage

Descriptions :

- Curve (9) Negative bias ratio = $20HZ \div [(60.0HZ 20.0HZ) \div 100\%] = -50\%$ Negative bias voltage = $[10V \div (50\% + 100\%)] \times 50\% = 3.33V$ Frequency voltage = $[60HZ \times (100\% + 50\%)] \div 10V = 90HZ \div 10V = 9$ HZ/V Operating voltage (V) = $60HZ \div 9$ HZ/V = 6.66VUpper limit of frequency / full voltage = 6.66V + 3.33V = 9.99V
- Curve (1) Negative bias ratio = $20HZ \div [(60.0HZ 20.0HZ) \div 150\%] = -75.18\%$ Negative bias voltage = $[10V \div (75.18\% + 150\%)] \times 75.18\% = 3.33V$ Frequency voltage = $[60HZ \times (150\% + 75.18\%)] \div 10V = 135.1HZ \div 10V$ = 13.51 HZ/VOperating voltage (V) = $60HZ \div 13.51 \text{ HZ/V} = 4.44V$ Upper limit of frequency / full voltage = 4.44V + 3.33V = 7.77V


AO output

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
0	F63	AO out function of analog variable	0~7		0
0	F64	AO out : 0V corresponding value	-32767~32767		0
0	F65	AO out : 10V corresponding value	-32767~32767		4096

- ♦ F63 : Both AO (Analog Output) and F75 : DO (Digital Output) are the output for a same I/O interface and only one function (AO or DO) of them is allowed to be output. When both functions are enabled at the same time, AO has preceding priority; however, hardware J1 functional selection must be established synchronously (please refer to P2-17 for the control circuit wiring diagram).
- ◆ When enabled the F63:AO analog output, please set F75=0 to disable the DO output (Both sets cannot be used at the same time).
- ♦ AO output F65 : the smaller the corresponding value, the higher the gain will be. Please refer to the standard ex-factory settings listed in the table below for the output functions, corresponding values and reference standard settings.
- The following 8 functions of analog output are able to monitor the analog input (Ai) signal and the status value of control output (rpm, current, voltage) from ac drive.

V -Description of parameter functions-

			-		
F63 Function of analog variable	F65 10V/ Corresponding value	Reference standard point	F63 Function of analog variable	F65 10V/ Corresponding value	Reference standard point
0 : Disabled	Х	Х	4 : Ai(Figure 1)	16384	Ai×(F53, F54)
1 : Rpm or frequency (Figure 2)	4096	F88 Parameter set value	5 : Ai1(Figure 1)	16384	Ai1×(F55, F56)
2 : Output current (Figure 4)	8192	F95 Parameter set value	6 : Ai2(Figure 1)	16384	Ai2×(F59, F60)
3 : Output voltage (Figure 3)	2200 3800	220.0 V F89 Parameter set value 380.0 V	7 : PID	16384	100%

- Description : ① In Figure 1, F63 set value is 4 for the display of input analog signal, F65 set value is 16384, reference standard point is Ai × (F53, F54 gain value), and the highest corresponding value of AO analog signal output is DC+10V.
 - ② In Figure 3, F63 set value is 3 for the display of output voltage, F65 set value is 2200, reference standard point is 220V, and the analog output signal AO is DC+10V.

Digital input

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F66	Scan cycle of digital input	10~2000	0.1ms	10

- This function is able to filter out the interference from the noise to the multifunction input terminals or get rid of the CUP malfunction caused by the resilience of switch. due to noise interference or switching ejection.
- Scan time = set value $\times 0.1$ ms

×	F67	Di1, Di2 setup	0~	·2		0	
---	-----	----------------	----	----	--	---	--

◆ This function is to set up the Di1 and Di2 terminals only and correspond to twoway operation control only, the rest of multi-functions are out of the operation range of Di1 and Di2.

■ 0 : Di1(FWD/STOP), Di2(REV/STOP), 2-way control

	1 WD/5101	
F7 (Operation control source) =1 (Digital input terminal)	REV/STOP	Dil Open : STOP, Close : FWD operation
		Di2 Open : STOP, Close : REV operation
F67 (Dil, Di2) =0		СОМ

EWD/STOD

□ 1: Di1(RUN/STOP), Di2(FWD/REV), 2-way control

	RUN/STOP	
F7 (Operation control source) =1 (Digital input terminal)	FWD/REV	Dil Open: STOP, Close: FWD available
F14 (Restriction of rotating direction)=0 (FWD/REV available)	_ .	Di2 Open: STOP, Close: REV operation
F67 (Dil, Di2) =1		COM

2: 3-wire stop:Di3(FWD/REV), Di2(STOP), Di1(RUN), and F68 setup is disabled automatically at the same time.

F7 (Operation control source) =1 (Digital input terminal) F14 (Restriction of rotating direction)=0 (FWD/REV

available)	
F67 (Dil, Di2) =2	

 STOP L	
FWD/REV	_
• •	

Dil Close : Running (push button one time) Di2 Open : Stop (push button one time) Di3 Open : FWD, Close : REV COM

V -Description of parameter functions-

×	F68	Di3 setup	• Multifunction input terminals can be planned to	0~14	1
×	F69	Di4 setup	set up their particular use as desired. To apply such functions, please peruse the functional instruction	0~14	2
×	F70	Di5 setup	for their priority control and relevant description of functions.	0~14	6
×	F71	Di6 setup	\bullet No fixed sequence is specified to set up the function	0~14	7
\times	F72	Di7 setup	for these six terminals; however, the set value of function for each terminal shall not be repeated	0~14	10
\times	F73	Di8 setup	except the set value "0: disabled".	0~15	3

- <u>0 : Disabled</u> This function is to disable the functional input terminal to avoid any malfunction caused by unknown reason.
- <u>1 : Enabled at external failure</u> An input of external failure will trip the ac drive and stop its output.
- <u>2 : RESET</u> When the ac drive tripped at failure, use this RESET command to release the failure-maintained state.

Never operate the RESET command in a constantly energized (ON) state.

- <u>3 : Free run stop</u> After inputting the functional terminal signal, the ac drive will switch off its output, and let the motor run at idling state and free running down to stop.
- 4: Master speed increases To enter the frequency-increasing signal of master speed from multifunctional terminal, for a F35 set value ≥ 20 seconds, F35 set value will be taken to perform the acceleration for increasing the master speed; and for a F35 set value < 20 seconds, the duration of 20 seconds will be taken to perform the acceleration for increasing the master speed.</p>
- <u>5 : Master speed decreases</u> To enter the frequency-decreasing signal of master speed from multifunctional terminal, for a F36 set value ≥ 20 seconds, F36 set value will be taken to perform the deceleration for decreasing the master speed; and for a F36 set value < 20 seconds, the duration of 20 seconds will be taken to perform the deceleration for decreasing the master speed.</p>
- ◆ These two sets of function mainly focusing on the frequency of master speed as the external control can be set up through functional terminals; however, the control power of F8: frequency command source must be set to 8: digital terminal increases/decreases.

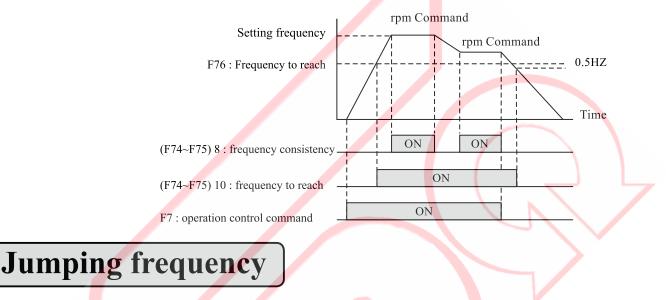
6 : Multi-stage speed command 1	
7 : Multi-stage speed command 2	Multi-stage speed commands 1, 2, 3, and 4 are formatted by binary system in 4-bit manner to compile 16 stages
8 : Multi-stage speed command 3	of speed for operation control.
9 : Multi-stage speed command 4	

- <u>10 : Inching operation</u> Once enabled, the inching command has the second priority following the command to enable the auto operation. .
- <u>11 : Enable auto operation</u> Once enabled and confirmed, it has the top priority over any rpm command; therefore, it is unable to select any other speed for operation whenever the execution of auto operation is enabled.
- 12 : Pause auto operation When selected the programmable auto operation function, ac drive will start to execute the procedural operation according to the preset 16-stage speed frequency after enabling the functional terminals; during the operation, the pause terminal can be enabled to interrupt the operation procedure temporarily and carry on the execution of operation procedure after restoring from the interruption. If the <u>auto operation terminal</u> is disabled and enabled again, the operation procedure will be started from the Home point.
- <u>13 : Di enables PID</u> Once selected to enable the Di, then PID function is controlled by Di external terminals.
- <u>14 : Di enables Ai1</u> When enabling the Di is selected, Ai1 shall be the frequency command source compulsorily.
- * When enabled this function, Ai1 shall not be received other functional setup for applications. (For example: the setup of F8, F115 and F116 relevant to Ai1).
- * Priority sequence: Auto operation > Jog frequency > Di enables Ai1 > multistage speed > F8: frequency command source.

■ <u>15 : MODBUS</u> – This function is set up by F73 (Di8) only and enabled by Di8.

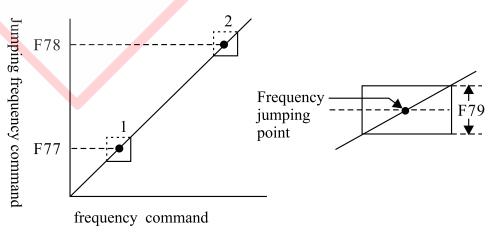
Multi-stage command terminals 16-stage speed	Din multi-stage command 4, $2^3 = 8$	Din multi-stage command 3, $2^2 = 4$	Din multi-stage command 2, $2^1 = 2$	Din multi-stage command 1, $2^0 = 1$
Master speed	OFF	OFF	OFF	OFF
Stage 1 speed	OFF	OFF	OFF	ON
Stage 2 speed	OFF	OFF	ON	OFF
Stage 3 speed	OFF	OFF	ON	ON
Stage 4 speed	OFF	ON	OFF	OFF
Stage 5 speed	OFF	ON	OFF	ON
Stage 6 speed	OFF	ON	ON	OFF
Stage 7 speed	OFF	ON	ON	ON
Stage 8 speed	ON	OFF	OFF	OFF
Stage 9 speed	ON	OFF	OFF	ON
Stage 10 speed	ON	OFF	ON	OFF
Stage 11 speed	ON	OFF	ON	ON
Stage 12 speed	ON	ON	OFF	OFF
Stage 13 speed	ON	ON	OFF	ON
Stage 14 speed	ON	ON	ON	OFF
Stage 15 speed	ON	ON	ON	ON
(Table 1)				

Digital (Do) output


Changeable during operation	Parameter	Description		Range	Unit	Ex-factory setting
X	F74	Relay1 setup	 Multifunctional output 			1
×	F75	DO setup * To set up control power, please see F63 parameter for description. (P5-12)	 terminal is programmable for setting control, no specific sequence is required. ◆ When enabled the F75: <u>DO output, please set</u> <u>F63=0 to disable the</u> <u>AO output (Both sets</u> <u>cannot be used at the</u> <u>same time)</u>. 	0~10		10

 \blacksquare <u>0</u>: **Disabled** – To disable the functional state of functional output terminal.

- <u>1 : Enabled at failure(NC)</u> Contact will be enabled a "ON(close)" state when the ac drive detects an occurrence of failure condition.
- <u>2 : In operation</u> Contact will be enabled a "ON(close)" state when the ac drive enters into a standby mode or is in operation.
- <u>3 : In zero speed</u> Contact will be enabled a "ON(close)" state when the ac drive stops or has an output frequency of 0.
- $\blacksquare \underline{4: FWD} \text{Output ON signal when the ac drive is executing the FWD} command and outputting a frequency > 0Hz.$
- **<u>5 : REV</u>** Output ON signal when the ac drive is executing the REV command and outputting a frequency > 0Hz.
- <u>6 : Accelerating</u> Output ON signal when the ac drive is accelerating toward the target command.
- <u>7 : Decelerating</u> Output ON signal when the ac drive is decelerating toward the target command.
- 8 : Consistent frequency Contact will be enabled an "ON (close)" state when the ac drive outputs a frequency consistent with the frequency set by rpm commands (master speed ~ speed at stage 15). (This function is rather unsuitable for being applied to rpm command of analog signal). •
- 9 : Overload pre-alarm contact will be enabled an "ON (close)" state when the ac drive detects an overload output; ac drive is still continuous to run with the (F85) electronic thermal relay enabled for time counting (unloading can be processed at this moment)
- \therefore Overload = F90 (motor) rated current×(F84) current level of electronic thermal relay %
 - <u>10 : Frequency to reach</u> Contact will be enabled an "ON (close)" state when the ac drive outputs a frequency ≥ frequency to reach (F76).


Changeable during operation	Parameter	Description	Range	Unit	Ex-fa sett	
×	F76	Frequency to reach	0.00~300.00	Hz	60.00	50.00

• The preset multifunctional output terminals will be maintained at <u>ON</u> state when output frequency \geq set value of <u>frequency to reach</u>, and switched to <u>OFF</u> state if the output frequency goes down below the <u>frequency to reach - 0.5HZ</u>..

×	F77	Jumping frequency 1	0.00~300.00	HZ	0.00
X	F78	Jumping frequency 2	0.00~300.00	HZ	0.00
×	F79	Jumping bandwidth	0.00~10.00	HZ	0.00

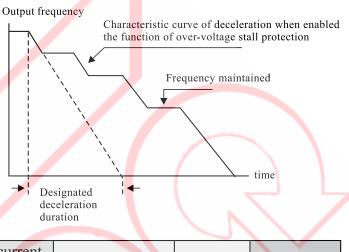
- Functions of jumping frequency and jumping bandwidth are applied to prevent the resonant vibration taken place to the mechanical or motor at some certain frequencies. It is bound to pass through this resonant area during acceleration or deceleration; however, the program will not allow the operation to stay at this area.
- An entry of 0HZ to set up the jumping bandwidth will disable the function of frequency jumping.

Motor protection setup

Changeable during operation	Parameter	Description	Rang	șe	Unit	Ex-factory setting
×	F80	Stall Protection setup	0~3	1		7
■ <u>bit0 : Protection function F81</u> – To enable the function for stalling voltage protection during deceleration.						
■ <u>bit1 : Protection function F82</u> – To enable the function for stalling current protection during acceleration.						
■ <u>bit2 : Pr</u>	$\blacksquare \underline{bit2: Protection function F83} - To enable the function for stalling current protection during operation.$					
□ <u>bit3 : Pr</u>	■ <u>bit3</u> : Protection function F84 – To enable the function electronic thermal relay.					
□ <u>bit4 : A</u> V	■ <u>bit4 : AVR voltage-regulating function</u> – To enable the AVR function for output voltage (U.V.W.).					

* Digital increment tables

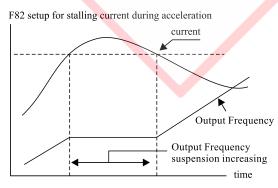
Set values	AVR 2 ⁴ =16	F84 2 ³ =8	F83 2 ² =4	F82 2 ¹ =2	F81 2 ⁰ =1	Set values	AVR 2 ⁴ =16	F84 2 ³ =8	F83 2 ² =4	F82 2 ¹ =2	F81 2 ⁰ =1
0	×	\times	×	×	\times	16	\bigcirc	\times	×	×	×
1	\times	\times	×	×	\bigcirc	17	\bigcirc	×	×	\times	\bigcirc
2	×	×	\times	\bigcirc	×	18	\bigcirc	×	\times	\bigcirc	\times
3	×	×	\times	\bigcirc	\bigcirc	19	\bigcirc	×	\times	\bigcirc	\bigcirc
4	×	×	\bigcirc	×	×	20	\bigcirc	×	\bigcirc	\times	×
5	\times	×	\bigcirc	×	\bigcirc	21	\bigcirc	\times	\bigcirc	\times	\bigcirc
6	\times	\times	\bigcirc	0	×	22	\bigcirc	\times	\bigcirc	\bigcirc	×
7	×	\times	0	\bigcirc	\bigcirc	23	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
8	×	\bigcirc	×	\times	\times	24	\bigcirc	\bigcirc	\times	\times	×
9	×	\bigcirc	\times	\times	\circ	25	\bigcirc	\bigcirc	\times	\times	\bigcirc
10	\times	\bigcirc	\times	\bigcirc	×	26	\bigcirc	\bigcirc	×	\bigcirc	\times
11	\times	0	\times	0	\bigcirc	27	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc
12	\times	\bigcirc	\bigcirc	×	×	28	\bigcirc	\bigcirc	\bigcirc	\times	\times
13	\times	\bigcirc	0	×	\bigcirc	29	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
14	\times	\bigcirc	0	\bigcirc	\times	30	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times
15	X	\bigcirc	\bigcirc	\bigcirc	\bigcirc	31	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc


* \bigcirc : protection function enabled

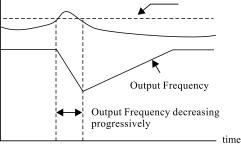
 \times : protection function disabled, no protection function when set value is 0.

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F81	Setup for stalling voltage during deceleration	330.0~400.0 660.0~800.0	Vdc	380.0 760.0

 As a result from the inertia of motor load when the ac drive is executing the deceleration; the motor will regenerate energy into the interior of ac drive to


heighten the voltage at DC bus. Therefore, the ac drive will stop decelerating (output frequency paused from decreasing) once a voltage at DC bus detected higher than the set value and resume its executing the deceleration provided that the voltage at DC bus falls below the set value.

×	F82	Setup for stalling current during acceleration	30.0~200.0	%	170.0
×	F83	Setup for stalling current during operation	30.0~190.0	%	160.0


- When performing the acceleration or operation, the ac drive will stop accelerating (output frequency is paused from increasing) due to a too-fast acceleration or too-big motor load that leads to a quick rise of output current from ac drive to exceed the set value of stalling current level; ac drive will resume its acceleration provided that the current is lower than the set value..
- Stalling current level during acceleration= (F95) rated current of ac drive × (F82) stalling current percentage
- Stalling current level during operation= (F95) rated current of ac drive × (F83) stalling current percentage

Example : <u>stalling current level</u> $=4A \times 170\% = 6.8A$

Function for stalling current protection during acceleration

F83 setup for stalling current during operation

Function for stalling current protection during operation

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F84	Current level of electronic thermal relay	1.01~2.00	F90	1.50
×	F85	Acting duration of electronic thermal relay	0.1~120.0	Second	60.0

- ♦ When the rated capacity of ac drive is higher than motor's rated capacity, please input the motor's rated capacity into the parameters F88

 F90 to avoid burning out the motor.
- This parameter provides a function of electronic thermal relay to protect the motor from overheating. This kind of protective characteristic has taken the protection against the short cooling ability encountered when motor is running at low speed into consideration.
- When the continuously loading current output from the ac drive exceeds the set value of (F90) motor rated current, the timer for acting duration of electronic thermal relay will be actuated.

* $\int (I^2A(pu)-1)dt \ge (I^*OL^2-1) \times TOL$, overload is overtime.

F86 Output current restriction	30.0~200.0	%	180.0
---------------------------------------	------------	---	-------

♦ When output current exceeds the set value, ac drive will reduce the output voltage quickly to protect the over-current from tripping the ac drive; and a F83 set value less than F86 set value by more than 20% is the most ideal condition.

0	F87	Oscillation-inhibit gainn	0.0~100.0	%	15.0
---	-----	---------------------------	-----------	---	------

• When operating in some frequency bandwidth, the electric machine will produce current oscillation; then adjustment of this parametric set value can effectively correct this condition. The current oscillating bandwidth for a motor with higher horsepower will appear at a lower frequency bandwidth; therefore, it is advised to duly increase the set value. However, an excessive setting may easily produce an over-excited current, please make a suitable adjustment.

Motor nameplate and Drive parameter setting

Changeable during operation	Parameter	Description	Range	Unit	Ex-fa sett	ictory ing
×	F88	Rated frequency	40.00~70.00	Hz	60.00	50.00
×	F89	R.S.T Output voltage (rms)	150.0~255.0 300.0~510.0	V	220.0 440.0	200.0 380.0
×	F90	Rated current(rms)	0.1~(F95×1.3)	А	F95(1	Note)

- F88
 F90 is a parametric group for the rated values in motor nameplate and all be set in accordance with the rated values in motor nameplate; the ac drive will perform the functions of operation control, motor overload protection, etc. according to this parameter group.
- * <u>Note: When F141 is resumed to its factory setting value, F90 will be resumed</u> <u>to a value the same as the F95 rated value.</u>
- ◆ F89 : R.S.T input voltage setup shall be the actual input voltage of the ac drive.

Low voltage level = Vdc < 200V (200 Series) / Vdc < 400 V (400V Series).

Over voltage level = Vdc > 414V (200 Series) / Vdc < 827 V (400V Series).

Brake level = $360 \text{ Vdc} \pm 3\%$ for AC 200V Series,

720 Vdc \pm 3% for AC 400V Series,

Brake level is constant to the hardware.

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F91	Rated slip frequency	0.00~10.0	Hz	4.00
0	F92	Slip compensation factor	0.0~200.0	%	50.0

- When the ac drive is driving the electric motor, an increase of motor load will increase the slip; so this parameter is to set up the compensation frequency to reduce the slip so that the operating rpm at rated current of the electric motor can further approach the synchronous rpm. the functions of slip frequency and the compensation factor are to overcome the load variation and control the motor at a constant speed as well.
- The rated slip of motor can be obtained from the following computation according to the data from the motor nameplate:

$$F91 = 60 - \frac{\text{Motor rpm} \times \text{motor's pole number (p)}}{120} F91 = 60 - \frac{1720(\text{RPM}) \times 4(\text{P})}{120} = 2.6(\text{Hz})$$

$$F92 = F91 \times 90\%(\text{Note}) = 2.34(\text{Hz})$$

* Note : The unit for the set value of upper limit for slip compensation function is %, please set 90% as the slip compensation factor; for a motor with a slightly bad performance, it is advised to adjust the slip compensation factor higher.

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F93	PWM carrier frequency	2000~16000	Hz	5000

- ◆ This parameter is able to set up the carrier frequency output from PWM.
- The set value of carrier frequency will affect the electromagnetic noise of the motor, the switching loss of the IGBT and the heat dissipation due to switching loss as stated in the table given below:

Carrier frequen	ncy Motor	noise Sv	witching loss	Thermal	runawa	y To	orque	Harmonic rate	
2KHz	Hig	gh	Low	Lo	ow	H	Iigh	Low	
			•				\$	1	
16KHZ	Lov	w	High	Hi	igh	I	low	High	
×	F94 Vdc gain(read only))	50~3	300	Fold	140	

• This parameter is to tune the gain of DC-BUS at both ends of capacitor while the result will be displayed (F4 = 5 : Vdc) and taken as one of the important parameters for internal control operation.

$\times F95 \qquad \begin{array}{c} \text{Rated current of ac drive} \\ \text{(read only)} \end{array} \qquad 1.0^{-1}$	0~500.0 A	5.0
---	-----------	-----

• This parameter is to display the rated current of ac drive while the rated current to this ac drive has been set at ex-factory.

//F curve setup

	×	F96	V/F curve selection	0~1		0
--	---	-----	---------------------	-----	--	---

- <u>0 : 3-point straight line setup</u> A mode to be applied to general applications, the same as a transportation system moving along a straight line; no matter the rpm will be, the loading torque is always constant.
- <u>1 : 2-point curve setup</u> A mode to be applied to a torque with proportional load; such as the cooling fan, pump, etc.

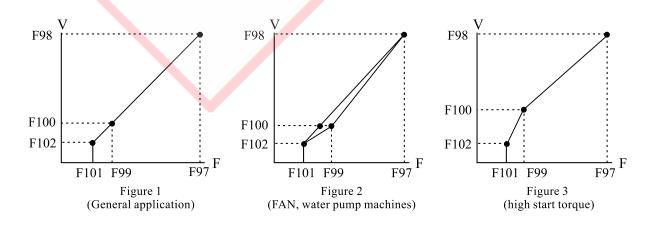
×	F97	Max. voltage frequency setup	0.10~300.00	Hz	60.00	50.00
×	F98	Highest output voltage getup	0.1~255.0 0.2~510.0	V	220.0	200.0
	ГУО	Highest output voltage setup		v	440.0	380.0

- The set values of F97 and F98, the maximum output frequency and the voltage shall be the set values of rated frequency and voltage set in the motor's nameplate.
- ♦ A F97 set value less than the rated frequency of electric machine may possibly result in an over-current output from the ac drive that may damage the electric machine or trigger the over-current protection of ac drive; and a F97 set value higher than the rated frequency of electric machine may possibly lead to a short torque output from the electric machine.

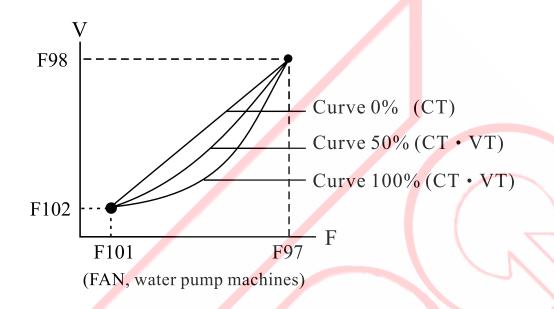
Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting	
×	F99	Selective setup for intermediate frequency	0.10~300.00	Hz	3.00	2.50
×	F100	Selective setup for intermediate voltage	0.0~255.0 0.0~510.0	V	16.5 33.0	15.0 28.5
×	F101	Min. output frequency setup	0.10~20.00	Hz	1.50	1.25
×	F102	Min. voltage setup	0.0~50.0 0.0~100.0	V	9.5 19.0	8.5 17.0

The set values of F99~F102 shall be based on the following basic calculation in accordance with the motor's rated voltage and frequency :
 220V (rated voltage) ÷ 60HZ (rated frequency) = 3.67 V/HZ

Reference value for setting the intermediate voltage :


 $3.67 \times F99$ (intermediate frequency is to take 3HZ as the basis) \times Voltage-boosting rate% Ex. : F99 = 3HZ, Voltage-boosting rate 150% (Max. rate shall not exceed 180%)

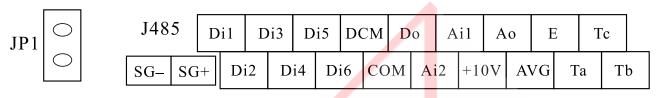
$$3.67 \times 3$$
HZ $\times 150\% = 16.5$ V


Reference value for setting the minimum voltage :

 $3.67 \times F101$ (the minimum frequency is to take 1.5HZ as the basis) \times voltage-boosting rate %

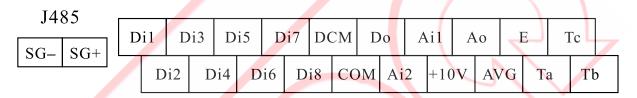
- Ex. : F101 = 1.5HZ, voltage-boosting rate 175% (Max. rate shall not exceed 200%) 3.67×1.5 HZ $\times 175\% = 9.6$ V
- Since the rated capacity varies with different motors, please see Appendix B (P10-1) for the ex-factory set values.
- Selection of high start torque (Figure 3) shall be applied only to a place where the wiring length from output side to the motor side is longer than 150m or a place having a bigger voltage drop (Normally this curve shall not be selected).
- ◆ F102 Minimum voltage setup, is the Boost function; when an output of low rpm and high torque is needed, please adjust to increase the F102 set value stepwise and confirm the motor current.

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F103	Curve adjustment gain	0.0~100.0	%	30.0



- * The user is requested to make the adjustment carefully without setting the value too big.
- * VT mode can only operate 2-point V/F curve control with a gain value (F103) operating within 30%~100%.
- * When setting the V/F curves, please follow their respective application to set up the curves under the conditions: F97>F99>F101, F98>F100>F102.
- * VT mode restricts the following parameter ranges :
 - (1) $F97 \ge 50.00 \text{ Hz or } 60.00 \text{ Hz}$
 - (2) $F98 \le 200.0V$ or 220.0V / 380.0V or 440.0V
 - (3) $F101 \le 2.00 \text{ Hz}$
 - (4) $F102 \le 8.5V$ or 9.5V / 17.0V or 19.0V
 - (5) $F103 \ge 30.0\%$, restriction will be enabled with Err = 16 warning indication when exceeding the range.
- * Please see Appendix B for ex-factory set values. (P10-1)

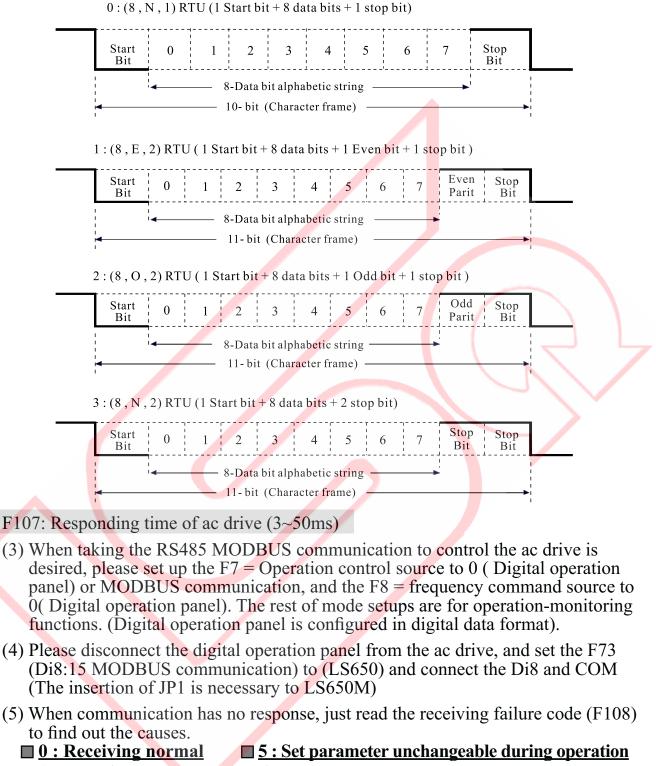
Comm	unica	tion setup				
×	F104	RS485 communication address	1~254		1	
 The legal communication addresses of ac drive is ranging 1~254 that stands for the communication address of ac drive in the communication network; also, the Master device (PC or PLC serves as the Master unit) can perform a remote monitoring according to the communication addresses designated to each ac drive. Caution : There shall be no two (or more than two) ac drives having the identical communication address in the same communication network. 						
×	F105	Data transfer rate	0~4		2	
◆ 2400 Bps Bits per second 2400 / 8 = 300 Bytes/Second Transfer rate is related to the length and quality of transmission cable; if a long transmission cable is selected, it is advised to select a lower transfer rate so as to obtain a higher transfer quality and stability. If an ac drive with a faster responding speed is desired, in addition to adjust a higher transfer rate, it is advised to adjust the F107 communication response delay time as well.						
×	F106	Communication data format	0~3		0	
■ 1 : 8, E ■ 2 : 8, C	E, 1 RTU (1), 1 RTU (1	start bit + 8 data bits + 1 sto start bit + 8 data bits + 1 Eve start bit + 8 data bits + 1 Od start bit + 8 data bits + 2 sto	en bit + 1 s <mark>to</mark> d bit + 1 sto			
×	F107	Communication response delay time	3~50	ms	5	
* The responding time of ac drive is the delay time for ac drive to send out the response signal after receiving the command signal from the Master device; because of that responding time of each Master device varies with the time interval from one packet to the next packet; therefore, if a responding time of ac drive is set too short to go with the responding time of Master device, then a phenomenon to have the responding signal overlapped with the command signal in the communication network may take place. Thus, the responding time of ac drive shall be set up according to different responding time of master devices.						
×	F108	Receiving failure response	0~8		0	
0: Receiving normal 5: Set parameter unchangeable 1: Function code error during operation 2: CRCL error 6: Parameter code error 3: CRCH error 7: Parameter value out of range 4: Packet-receiving time 8: Locked parameter, unchangeable over 0.2 second set values (except F4,F18,,F142)						


MODBUS communication

LS650M Series :

* When enabling the MODBUS communication is desired, it is necessary to set up the F73 (Di8 : 15 MODBUS communication) and insert the JP1 (JP1 is for Di8 function). (Note 1)

LS650 Series :



- * When enabling the MODBUS communication is desired, it is necessary to set up the F73 (Di8 : 15 MODBUS communication) and connect the Di8 to COM. (Note 1)
- * (Note 1) : The RS-485 is the internally exclusive communication format for digital operation panel; and a different communication format shall be applied to the external (SG-, SG+) MODBUS communication monitoring; do not connect them at the same time for operation; only single format is allowed to be enabled.
- ◆ Communication procedures between RS485 MODBUS and PLC
- (1) First, take the digital operation panel to set up the F73 = 15 : MODBUS (Set Di8 terminal to MODBUS function and leave this terminal open-circuited).
- (2) Again take the digital operation panel to set up the communication mode parameters (F104~F107) as follows :
- F104 : Communication address of ac drive (1~254)
- Caution : The legal communication addresses are ranging from 1 to 254; if the communication address is set to 0, it means to perform broadcasting to all motor actuator. Under such a mode, the motor actuator will not respond any message to the master device.

F105 : PC transfer rate $(0 \sim 4)$

0:2400, 1:4800, 2:9600, 3:19200, 4:38400

F106 : Communication data format (0~3)

- 1 : Function code error ■ 6 : Parameter code error
 - **7** : Parameter value out of range
- **3** : CRCH error

2 : CRCL error

- **8** : Locked parameter, unchangeable set values
- <u>4 : Packet-receiving time</u> over 0.2 second
- (except F4,F18,F142)

Communication data structure (the data contents are 16-bit numbered format)

- i. Keep the no-input-signal state ≥ 10 ms
- ii. D1 : Communction address
- iii. D2 : Functional code
- iv. D3 : Data 1 Content (H)
- v. D4 : Data 1 Content (L)

(6) Command function code :

- vi. D5 : Data 2 Content (H)
- vii. D6 : Data 2 Content (L)
- viii. D7 : Check code (CRCL)
- ix. D8 : Check code (CRCH)
- x. Keep the no-input-signal state ≥ 10 ms
- 03H : To read the parameters set to and displayed by ac drive
- 06H : To write in the operation parameters of ac drive and set up parameters
- 08H : Loop detection
- 1. [03H] To read the parameters set to ac drive (D2=03H, D3=00H)

A. PC calls :	B. Ac drive responds :
D1: Communication address (00~FFh)	D1: Communication address (00~FFh)
D2: Function code (03h)	D2: Function code (03h)
D3: #th set parameter (H) (00h)	D2: Number of byte for parameter content 2*(0 <u>n</u> h)
D4: #th set parameter (L) (00~D2h)	D3: Content of set parameter 1(H) (00~FFh)
D5: Number of data entry (H) (00h)	D4: Content of set parameter 1(L) (00~FFh)
D6: Number of data entry (L) $(0\underline{n}h)$	
D7: CRCL	
D8: CRCH	D <u>m</u> -3: Content of set parameter n(H) (00~FFh)
	D <u>m-2</u> : Content of set parameter n(L) (00~FFh)
	D <u>m</u> -1: CRCL
	D <u>m</u> : CRCH
* Number of data entry <u>n</u> = 1~12	* $\underline{\mathbf{m}} = 5 + 2 * \mathbf{n}$

Ex. : To read the set values of parameters from the ac drive (F18 Note 1, F19) Responding data : F18=60.00Hz, F19=5.00Hz Note 2

 Note 1 : F18=0012h, Number of data entry: 2 entries Note 2 : Responding data will be displayed without decimal points, so 60.00HZ=6000=1770h, 5.00HZ=500=01F4h

Calling commands at PC side are as follows:		Responding data from ac drive are as follows:		
Communication address	01h	Communication address	01h	
Functional code	03h	Functional code	03h	
18th set parameter (H)	00h	Number of data entry	0 <u>4</u> h	
18th set parameter (L)	12h	Contents of F18 parameter (H)	17h	
No. of data entry (H)	0 <u>0</u> h	Contents of F18 parameter (L)	70h	
No. of data entry (L)	02h	Contents of F19 parameter (H)	01h	
No. of data entry (L)	0 <u>2</u> 11	Contents of F19 parameter (L)	F4h	
CRCL	64h	CRCL	FEh	
CRCH	0Eh	CRCH	4Bh	

2. [03H] To read the parameters operation displayed by ac drive (D2=03H, D3=21H)

Ex. : To read the indicating values from the operation of ac drive (2101h, Note 1, output frequency) (Responding data : 60.00 HZ Note 2)

* Note 1 : 2101h=8449, Number of data entry: 1 entries

Note 2 : Responding data will be displayed without decimal points, so 60.00HZ=6000=1770h

Calling commands at PC side are a	s follows:	Responding data from ac drive are as follows:		
Communication address	01h	Communication address	01h	
Functional code	03h	Functional code	03h	
Read the indicating parameter (H)	21h	Number of data entry	0 <u>2</u> h	
Read the indicating parameter (L)	01h	Operation-indicating value (H)	17h	
No. of data entry (H)	00h	Operation-indicating value (L)	70h	
No. of data entry (L)	0 <u>1</u> h			
CRCL	DFh	CRCL	B6h	
CRCH	F6h	CRCH	50h	

2100h: Frequency command(F);2101h: Output power supply frequency(H);2102h: Output current(A);2103h: Output voltage (E);2104h: Unitless(H);2105h: Unitless(L);2106h: Normal voltageat DC side (Vdc);2107h: Voltage at DC side before startup (Vdc);2108h: Reserved;2109h: Ai1(%);210ah: Ai2(%);210bh: PID(%);210ch: Input status at digital terminal;210dh: ERR;210eh: Reserved;

Response-display parameters :	Data format in expression	Response-display parameters :	Data format in expression	
0 : Set frequency (F)	$\times \times \times . \times \times (F)$	8 : Digital operation panel Ai (%)	×××.×	
1 : Output frequency (H)	×××.××(H)	9 : Ai1(%)	×××.×	
2 : Output current (A)	×××.×(A)	10 : Ai2 (%)	×××.×	
3 : Output voltage (E)	×××.×(E)	11 : PID (%)	××××	
4 : Unit less (H)	××××.×(H)	12 : Input status at digital terminal	<u>Di8</u> ~ <u>Di1</u>	
5 : Unit less (L) * $(2^{15}=65535)$ is displaye		* Digital input display is expressed in bit methodand the max. display value is 255. (for detailed introduction, please see P.3-5 for details).		
(L); for a displayed value (>65535), it will be disp	played in unitless	13 : (ERR) 1 ~ 17 ×>		
word (H) (2^{31}) ; they are two words (H, L) for di		- * Error display message will be indicated in number		
$\begin{array}{c} 6 : \text{ Normal voltage at} \\ \text{DC side (Vdc)} \end{array} \times \times \times \times \times \times \end{array}$		only, please see P5-26 for details.		
7 : Voltage at DC side before startup (Vdc) ×××.×		* To display the content with decimal points, the first digit of demical point will be divided by 10 and the second digit will be divided by 100.		

* Note: (-) denotes a reversal running direction.*

3. [06H] To write in the set parameters of ac drive (D2=06H, D3=00H)

A. PC calls :		Acc	lrive respo	nds :	
D1: Communication address	(00~FEh)	D1:	Commun	ication address	(00~FEh)
D2: Function code	(06h)	D2:	Function	code	(06h)
D3: #th set parameter (H)	(00h)	D3:	#th set pa	rameter (H)	(00h)
D4: #th set parameter (L)	(00~D2h)	D4:	#th set pa	rameter (L)	(00~D2h)
D5: Write-in content of parameter (H) (00~FFh)	D5:	Write-in o	content of parameter (H)	(00~FFh)
D6: Write-in content of parameter (L) (00~FFh)	D6:	Write-in o	content of parameter (L)	(00~FFh)
D7: CRCL		D7:	CRCL		
D8: CRCH		D8:	CRCH		

4. [06H] To write in the operation parameters of ac drive (D2=06H, D3=20H, D4=00H)

A. PC calls :	B. Ac drive responds :				
D1: Communication address (00~FFh)	D1: Communication address (00~FEh)				
D2: Function code (06h)	D2: Function code (06h)				
D3: #th operating parameter (H) (20h)	D3: #th operating parameter (H) (20h)				
D4: #th operating parameter (L) (00h)	D4: #th operating parameter (L) (00h)				
D5: Write-in content of parameter (H) (00h)	D5: Write-in content of parameter (H) (00h)				
D6: Write-in content of parameter (L) $(00 \sim 05h)$	D6: Write-in content of parameter (L) (00~05h)				
D7: CRCL	D7: CRCL				
D8: CRCH	D8: CRCH				
2000h(D6 operation control):0: Stop1: FWD2:REV3: Inching FWD4: Inching REV5: Failure reset					
F18 : (Master speed command)					

Ex. : 1 Writing to enable the ac drive to perform setup in 50.00HZ 2 Writing to enable the ac drive to perform the running command 2000h: 1, FWD running

Note 2 : Running command=2000h=8192, FWD rotation=0001h

Calling commands at PC side are as follows:	()50HZ	②FWD running	Responding data from ac drive are as follows:	()50HZ	②FWD running
Communication address	01h	01h	Communication address	01h	01h
Functional code	06h	06h	Functional code	06h	06h
18 th set parameter (H)	00h	20h	18 th set parameter (H)	00h	20h
18 th set parameter (L)	12h	00h	18 th set parameter (L)	12h	00h
No. of data entry (H)	13h	00h	Contents of set parameter (H)	13h	00h
No. of data entry (L)	88h	01h	Contents of set parameter (L)	88h	01h
CRCL	24h	43h	CRCL	24h	43h
CRCH	99h	CAh	CRCH	99h	CAh

^{*} Note 1 : F18=0012h, 50.00HZ=5000=1388h

5.[08H] Loop detection (D2=08H)

(7) 08H : Loop detection						
A. PC calls :		B. Ac drive responds :				
D1: Communication address	(00~FEh)	D1: Communication address (00~FEh)				
D2: Function code	(08h)	D2: Function code (08h)				
D3: Test content of parameter (1)	(00~FFh)	D3: Test content of parameter (1) (00~FFh)				
D4: Test content of parameter (2)	(00~FFh)	D4: Test content of parameter (2) (00~FFh)				
D5: Test content of parameter (3)	(00~FFh)	D5: Test content of parameter (3) (00~FFh)				
D6: Test content of parameter (4)	(00~FFh)	D6: Test content of parameter (4) (00~FFh)				
D7: CRCL		D7: CRCL				
D8: CRCH		D8: CRCH				

Ex. : Loop testing commands

Calling commands at PC sid	e are as follows :	Responding data from ac drive are as follows :			
Communication address	01h	Communication address	01h		
Functional code	08h	Functional code	08h		
Content of test parameter (1)	01h	Content of test parameter (1)	01h		
Content of test parameter (2)	02h	Content of test parameter (2)	02h		
Content of test parameter (3)	03h	Content of test parameter (3)	03h		
Content of test parameter (4)	04h	Content of test parameter (4)	04h		
CRCL	41h	CRCL	41h		
CRCH	04h	CRCH	04h		

CRC production steps :

- 1. CRC = 0FFFFh
- 2. CRC = (CRC) XOR (D1)
- 3. Determine if CRC's BIT0 is 1? Yes : CRC = (CRC >>1) XOR (0A001h) No : CRC = CRC >> 1

* >>1 : right-shift for one digit input 0 to higher bits.

- 4. Again, repeat the step 3 for 7 times (that is, the step 3 shall be executed 8 times in total)
- 5. Download the data of next entry D2.
- 6. Repeat steps 2~4
- Repeat steps 5 and 6 until all the data (D1~D6) have been executed; and then the final value is the CRC value.
- 8. D7 is the low 8-bit CRC while D8 is the high 8-bit CRC..

Changeable during operation	Parameter	Description		Range	Unit	Ex-factory setting
×	F109	Current failure record		0~20		0
×	F110	Failure record of last time		0~20		0
×	F111	Failure record of last two times		0~20		0
×	F112	Failure record of last three times		0~20		0
×	F113	Number of failure-auto reset time during operation		0~10		0

Failure record

- ◆ F113 (set value 0 is to disable the auto-reset function) will reset to release the failure taken place to trip the ac drive during the operation.; in case there are safety concerns, please cancel the F113 auto reset function.
- The user can set up the number of times of auto-reset. When the number of times of failure is over the preset number of times, please use RESET pushbutton in the digital operation panel to clear it, or enable the digital input terminal 2: RESET to clear it; thus doing can zero the number of times of auto-reset.
- ◆ Default setting of duration is 6 seconds to auto-reset the failure. For an equipment with larger mechanical inertia, please refer to parameters F9 ~ F10 for functions to set a delay of time to start the operation.
- ◆ F113 auto-reset will not respond to the failure taken place during the standby state
 F xx.xx, please press the RESET pushbutton to reset and clear it.
- ◆ If the operation control source is set to F7:0 Digital operation panel, then F113 will auto reset and restart the operation when a failure taken place; when any failure phenomena taken place during the operation of ac drive, F113 will automatically reseet and remove the failure (auto reset disabled when set 0); in case there are safety concerns, please cancel the F113 auto reset function.
- ◆ If the operation control source is set to F7:1 Digital input terminal, then F113 will auto reset and operate under the current control mode when a failure taken place.

Error code	Descriptions
Err 0	Communication of digital operation panel failed
Err 1	Over-voltage or over-current during standby state (hardware detection and protection)
Err 2	Over-voltage or over-current during acceleration (hardware detection and protection)
Err 3	Over-voltage or over-current during deceleration (hardware detection and protection)
Err 4	Over-voltage or over-current during speed regulation (hardware detection and protection)
Err 5	External failure
Err 6	DC over voltage (O.V)

Error code	Descriptions
Err 7	DC low voltage (L.V) during operation
Err 8	Electronic thermal relay activated
Err 9	AC drive overloaded longer than the allowable time duration (150%, 60 seconds/CT, 120%, 60 seconds/VT)
Err 10	Over temperature, or PF or PUF malfunction
Err 11	DSP-saved parameters are locked and unable to change them.
Err 12	Parameter setup error 0 (Out of range)
Err 13	Parameter setup error 1 (Di repeated setting)
Err 14	Parameter setup error 2 (F101>F99>F97,F15>F16)
Err 15	Parameter setup error 3 (F90>F95×1.3)
Err 16	VT parameter setup error (F97,F98,F101,F102,F103)
Err 17	Program code error
Err 18	8 ~ Err 20 reserved for failure signals.

External PID

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
X	F114	PID mode	0~4		0

■ **<u>0</u> : PID disabled** – PID control disabled.

■ <u>1 : Stop and reset PID value to Zero</u> – Operation values of PID control will not be reserved if a STOP command is input while executing the PID control.

- 2: Stop and reserve PID value Operation values of PID control will be reserved if a STOP command is input while executing the PID control. Those PID reserved values will be the initial values of PID operation when receiving a START command again.
- <u>3 : Di enabled (Stop and reset PID value to zero)</u> 13: Enable PID function can be set up from any one terminal of the external terminals Di (F68 ~ F73); and operation values of PID control will not be reserved if a STOP command is input while executing the PID control.
- <u>4 : Di enabled (Stop and reserve PID values)</u> 13: Enable PID function can be set up from any one terminal of the external terminals Di (F68 ~ F73); and operation values of PID control will be reserved if a STOP command is input while executing the PID control. Those PID reserved values will be the initial values of PID operation when receiving a START command again.

Changeable during operation	Parameter	Description		Range	Unit	Ex-factory setting
×	F115	PID command source		0~3		0
■ <u>0 : F1</u>	22 PID con	nmand value setup	□ <u>1:A</u>	<u>i(V.R)</u> □ 2	:Ai1 [■ <u>3 : Ai2</u>
×	F116	PID feedback source		0~1		0

• Select the input terminal to function as the detecting source of PID feedback point.

Set value	Function	Description
0	Ai1 input	◆ Input terminal of analog signal command for external feedback value.
1	Ai2 input	 Parameter F55~F62 will undertake the adjustment and setup for the gain and shift of analog signal commands.

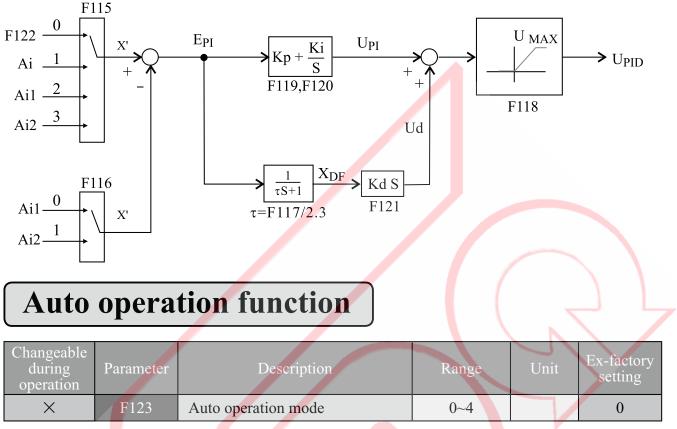
0.05~10.00

Second

0.20

• D input is serially cor	nected to a low-	pass filter to f	ilter out	the high-free	Juency
noise Time constant	$\tau = F117/2$ 3	1		Ĭ	

Setup of input filtration time D


F117

 \bigcirc

\bigcirc	F118	PID output limit	0.00~100.00	%	100.00
0	F119	Кр	1.00~300.00	%	100.00
0	F120	Ki	0.00~300.00	%	25.00
0	F121	Kd	0.00~300 <mark>.0</mark> 0	%	2.00
	F122	PID command value setup	0.00~10 <mark>0</mark> .00	%	50.00

- ♦ Kp control : To adjust an output of proportional operating magnitude according to the deviation of response. Entry of a big gain will obtain a fast response, but a too-big gain will cause oscillation; entry of a small gain will obtain a slow response.
- ♦ Ki control : To adjust an operating gain of output integral deviation so that the feedback value and the target value can be identical and effective. An entry of big integral gain will obtain a fast response speed, but a too-big gain will cause oscillation.
- ♦ Kd control : To adjust an operating gain of differential deviation so as to respond the drastic variation as soon as possible. Entry of a big differential gain will attenuate the oscillation induced by the occurrence of deviation. However, an entry of too-big differential gain will cause oscillation instead.
- PID command value setup control is to set a parameter as the constant command target value to proceed the control.

PID Control block diagram :

- **0** : Auto operation mode disabled Automatic operation is inoperative.
- <u>1 : Stop follows a reciprocating operation</u> To perform a reciprocating Operation from master speed to stage 15 speed.
 - Reciprocating operation To run from the master speed → stage 1 stage speed...15 speed → stage 15 speed → stage 14 speed...master speed → master speed ..., etc.; that is, running from forward sequence to backward sequence as one cycle for 32 speeds in total and the operation follows to run reciprocally and continuously. The number of cycle can be set by F124 while the number of cycle and the stage speed can be displayed in the 7-stage display screen; after the number of time of operation cycles are over, the operation stops automatically.
- <u>2 : Stop follows a cyclic operation</u> To perform the automatic operation from the master speed to the stage 15 speed in a clockwise manner.
 - Cyclic operation Master speed → stage 1 speed...stage 15 speed → master speed → stage 15 speed..., etc. in a clockwise manner; 16 speeds in total for one cycle, and operation follows to run cyclically and continuously. The number of cycle can be set by F124 while the number of cycle and the stage speed can be displayed in the 7-stage display screen; after the number of time of operation cycles are over, the operation stops automatically.

- <u>3 : Master speed follows a reciprocating operation</u> The executing method is the same as the 1 : Reciprocating operation, but, operation will be running at master speed instead after the number of operation cycles are over.
- <u>4 : Master speed follows a cyclic operation</u> the executing method is the same as the 2 : Cyclic operation, but, operation will be running at master speed instead after the number of operation cycles are over.
- Caution : After enabling the auto operation setup, the multi-function input terminal 11: auto operation and 12: pause auto operation shall govern. Its priority is superior to other rpm commands; therefore, selection of command to run at other speed is not available once the auto operation is enabled. (set values 1~4 are for enabling the auto operation).

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F124	Number of cycles	1~3000	time	1
(The num	nber of running cycle needed for	auto operation	1.	
×	F125	Auto operation mode master speed time	-30000~30000	Second	1
X	F126	Auto operation mode stage 1 time	-30000~30000	Second	0
×	F127	Auto operation mode stage 2 time	-30000~ <mark>30</mark> 000	Second	0
×	F128	Auto operation mode stage 3 time	-30000~3 <mark>0</mark> 000	Second	0
X	F129	Auto operation mode stage 4 time	-30000~30000	Second	0
×	F130	Auto operation mode stage 5 time	-30000~30000	Second	0
X	F131	Auto operation mode stage 6 time	-30000~30000	Second	0
×	F132	Auto operation mode stage 7 time	-30000~30000	Second	0
X	F133	Auto operation mode stage 8 time	-30000~30000	Second	0
X	F134	Auto operation mode stage 9 time	-30000~30000	Second	0
×	F135	Auto operation mode stage 10 time	-30000~30000	Second	0
X	F136	Auto operation mode stage 11 time	-30000~30000	Second	0
×	F137	Auto operation mode stage 12 time	-30000~30000	Second	0
X	F138	Auto operation mode stage 13 time	-30000~30000	Second	0
×	F139	Auto operation mode stage 14 time	-30000~30000	Second	0
×	F140	Auto operation mode stage 15 time	-30000~30000	Second	0

To set up the time and direction of operation for each stage. The setup of negative number of seconds is for performing the REV running and the counting time while the positive number of seconds are for performing the FWD running and counting time. If controlling the FWD and REV operation is desired, please see F14 setup for details. \odot When setting up the auto operation stage & speed, the speed for any one stage can be set to 0HZ frequency as the time-counting stop function; or when running at any one of the stage speed frequency is not desired, just set there of running time to zero to skip it and perform the next stage speed frequency; for descriptions of stage, speed and running speed frequency, please see parameter setup $F18 \sim F33$.

* The positive & negative signs shown in F125~F140 denote the running direction.

Retri	eval p	arameters				
hangeable during operation	Parameter	Description		Range	Unit	Ex-factory setting
×	F141	Retrieval parameters		0~5		0
0 :	Not recalle	<u>d</u>				~ 7
□ <u>1:2</u>	220V/440V,	<u>60HZ factory settings</u> -				440V,60HZ
				ctory settings.		
$\square \underline{2:2}$	<u>20V/400V,</u>	<u>50HZ factory settings</u> –		ve the o <mark>rig</mark> ination to the setting se	ıl 220V/4	40V,50HZ
□ <u>3:2</u>	<u>00<mark>V</mark>/380V,(</u>	<u>50HZ factory settings</u> –		ve the orig <mark>in</mark> a tory settings	1 200V/3	80V,60HZ
■ <u>4:2</u>	<u>00V/380V,</u>	<u>50HZ factory settings</u> –		ve the origination of the origin	al 200V/3	80V,50HZ
* Parar	neters F94,	F95, F109~F112 are exc			ieval fund	ction.
■ <u>5:0</u>	<u>Clearance o</u>		e opera	y phenomena tion of ac driv cameters F109	ve will be	ace during e recorded
		of	failure	e function of records to cle aved in the me	ear the co	
\bigcirc	F142	Lock the functional parame	eters	0~1		0
□ <u>0:</u>	Changeable	e – All set values of para memory of DSP.	meters	can be saved	in the EI	EPROM
■ <u>1:</u>]	Functional		ntents	ction is able to of parameters eable and for	; the con	tents are
		8 are exempted from this re changeable.	restric	ction of lockir	ng the fur	nctional

Water pump function

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F143	Enable the water pump function	0~1		0

□ <u>0 : Disable</u>

■ <u>1 : Enable</u> – To enable the constant-pressure control function of water pump (F144~F146), standby operation and warming-up function (F147~F149) and protective function for no-water operation of water pump (F150~F152).

	×	F144	Sleep-detecting time	5~12	2000	Second		30
--	---	------	----------------------	------	------	--------	--	----

♦ When pressure of water pump ≥ F0: set value of water pressure, function F144: sleep-detecting time will be enabled for detection.

	× F145	Sleep level	0.0~100.0	%	50.0
--	--------	-------------	-----------	---	------

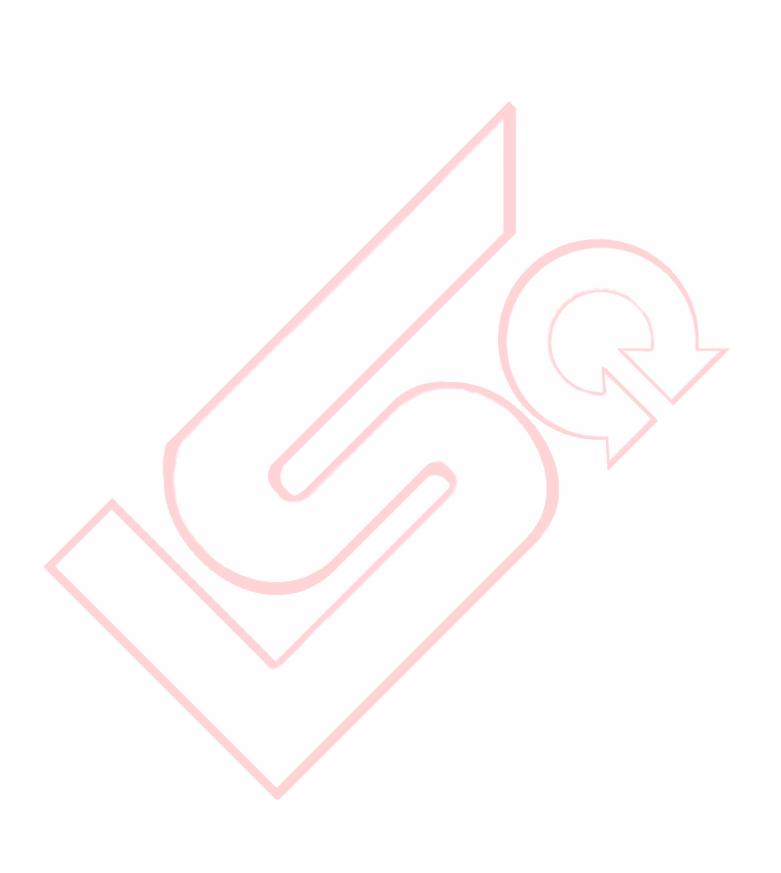
- When the operating frequency goes below the F145: sleep level, pump will be reduced the speed to 0.0HZ and enter into a standby status. (This function can save the water pump from running at ineffective area).
- ♦ Sleep frequency = F16 : set value of upper frequency limit × F145 : sleep level %. Example: Sleep frequency (30.00HZ) = F16 : 60.00HZ × F145 : 50.00%

X	F	F146	Wake-up pressure error	0.0~10 <mark>0</mark> .0	%	15.0

- ◆ When pressure < F146 : set value of wake-up error, ac drive is enabled to start to run.
- ♦ Wake-up pressure = F0 : set value of water pressure (F0 : set value of water pressure × F146 : set value of wake-up pressure error).

×	F147	Time for detection of standby operation	0~12000	Second	900
×	F148	Standby operation time	0~12000	Second	60
×	F149	Standby operation frequency	0.00~300.00	Hz	0.00

- They are standby operation functions of water pump applicable to cope with the requirements of some special places.
- ♦ When pressure of water pump ≥ F0 : set value of water pressure, the pump will enter into a constant-pressure standby state for an extended period of time, i.e., the time-counting of F147: Time for detection of standby operation is enabled; when the time counting is up, F149: standby operation frequency and F148: standby operation time will be enabled to access a repeatedly cyclic control.


- Under a standby operation mode with a pressure < wake-up error, standby operation mode will be disabled while normal constant-pressure control will be enabled.
- ◆ An entry of 0.0HZ to the F149 : standby operation frequency will disable the standby operation mode.

Changeable during operation	Parameter	Description	Range	Unit	Ex-factory setting
×	F150	Low water pressure (no water) detection level	0.0~100.0	%	8.0
×	F151	Time of low water pressure detection	0~12000	Second	60
×	F152	Time of no-water standby and restart	0~12000	Second	1200

- When water pump is running at a water pressure < F150 : low water pressure detection level, the time counting of F151 : low water pressure detection time is enabled; when the time counting is up, F152 : no-water standby and restart time will be enabled; at this moment, the parameter F4: setup 12: water pressure indication of water pump is able to indicate the countdown for the no-water standby and restart time together with an entry into a repeatedly cyclic control.</p>
- The scope of no-water detection covers the water shortage at water supply side, rupture of water pipe or malfunction of pressure detector (open-circuit).

×	F153	Water pump display magnification	>	1.00~2.00	1.00
				·	

- ♦ When leaving the plant take pressure Sensor 10.0kg/cm² (0.0~10.0Vdc or 4~20mA) as the datum.
- The water pump display magnification, may depend on is bigger than 10.0kg/cm² above pressure Sensor to make the gain hypothesis.

VI Protection and troubleshooting

- ◆ Troubleshooting chart 6-1
- Most frequently used troubleshooting 6-3

Troubleshooting chart

• This Chapter covers the diagnostics and remedy actions relevant to the failure of ac drive, and the analysis of problem and solutions relevant to the faulty phenomena of motor.

<Table> Failure indication and remedy action

Displayed error code	Description	Possible causes	Remedy actions
Err 1	Over-voltage or over-current in standby state	 Input voltage of power supply (R.S.T.) was too high to cause the voltage at DC bus exceed the voltage detection level. Phase-phase short-circuits or grounding short-circuit taken place to output wire. 	 Reduce the voltage to fall within the range of power supply specifications. Please verify the output wire to remove any short-circuited phenomena.
Err 2	Over-voltage or over-current during acceleration	 Started from motor's idling (easy to cause over-voltage or over-current). Acceleration time too short (easy to cause over-current) Any leakage due to poor insulation of the motor 	 Please set F9, F10 for braking time and braking current Extend the acceleration time appropriately. Check motor isolation or change new one.
Err 3	Over-voltage or over-current during deceleration	• Deceleration time too short (easy to cause over-voltage or over-current)	•Extend the deceleration time appropriately (setup shall comply with the deceleration time required by GD ² .)
Err 4	Over-voltage or over-current during speed regulation	 Motor was driven to start by an external force Drastic changing load	 Correct the system and remove the source of external force. Change the load smoothly.
Err 5	External failure	 External failure signal input from digital input terminals (Di3~Di8) 	• Remove the cause of external failure.
Err 6	DC over voltage (O.V) during operation	 Input voltage of power supply (R.S.T) too high to exceed the DC protection level Deceleration time too short, motor's regenerative energy too big. (Input 200Vac: O.V 414Vdc/ 400V: O.V 827Vdc) 	 Lower the input voltage of power supply. Extend the deceleration time, or connect the brake resistance (or brake controller).
Err 7	DC low voltage (L.V) during operation	 Momentary power outage left the voltage lower than the DC protection level (200V: L.V 200Vdc/ 400V: L.V 400Vdc) Voltage of input power supply too low. 	• Please examine for the cause and improve the quality of power supply.
Err 8	Electronic thermal relay enabled	 Loading current of motor exceeded the internal electronic thermal set values (F84, F85 and F90) F102:Min.output voltage and F101: Min voltage / frequency were set too high in the V/F setup. 	 Please correct the motor load and check the parameters (F84, F85 and F90) for correctness. Please re-examine the set values of parameters (F101 and F102) for V/F characteristic Adjust the F90: rated current of motor a little bit higher.

-Protection and troubleshooting- VI

Displayed error code	Description	Possible causes	Remedy actions
Err 9	AC drive overloaded longer than the allowable time (150%, 60 seconds/CT) (120%, 60 seconds/VT)	 CT mode: ac drive is loaded a current over the rated current by 150% for 60 seconds. VT mode: ac drive is loaded a current over the rated current by 120% for 60 seconds. 	 Please examine if the value exceeds the rated value in F95. CT: (150%, 60 seconds), (175%, 27.5 seconds), (200%, 3 seconds) VT: (120%, 60 seconds), (145%, 27.5 seconds), (170%, 3 seconds)
	Temperature of heat sink too high	Faulty operation of cooling fanAmbient temperature too high	 Change the cooling fan. Increase the air-changing volume of environment.
Err 10	PF input power supply under phase or voltage too low	 Wiring obstructer or magnetic contactor defectively enabled. Loosened wiring terminals of input power supply. Fluctuation too big for voltage of input power supply 	 Check the cause, take remedy actions and restore power. When inputs owes, and the output current surpasses the motor nominal current above 50% time jumps Err10.
	PUF fuse blown	• IGBT module damaged and fuse was further blown due to short-circuit or grounding taken place at output side of ac drive.	• Check the causes, take remedy actions and replace or repair the ac drive.
Err 11	Parameters stored in DSP locked and unchangeable	• Storage of parameters has been restricted, and further modification to the new data is unattainable.	• If modifying the new data is desired, please set up the parameter F142=0 : changeable.
Err 12	Parametric setting error 0 (Default 1)	• EEPROM memory failure, incomplete storage, set value of parameter out of range.	 Please use parameter F141=1: parameter initialization, retrieve the factory-set functions, and then proceed the setting for the parameter group of motor; or check the set values of parameters one by one for any value out of range. If the foregoing steps are still in vain, please send it back to factory for repair.
Err 13	Parametric setting error 1 (Di setting repeated)	• Multifunctional input terminals Di3 ~Di8 were repeatedly set to an identical function (except the 0: disabled)	• Please examine the set values of parameters F68~F73 for any repeated settings
Err 14	Parametric setting error 2	 Incorrect set value of parameter is caused by the following reasons: ① (F101>F99>F97) ② (F15>F16) 	 Please check the following two points of conditions for setting the standard value of parameter: ① (F101<f99<f97)< li=""> ② (F15<f16)< li=""> </f16)<></f99<f97)<>
Err 15	Parametric setting error 3	• Incorrect set value of parameter is caused by: (F90 × 1.3 >F95)	• Please check the following condition for setting the standard value of parameter: (F90 × 1.3≤F95)
Err 16	Parametric setting error 4	 Incorrect set value of parameter is caused by the following five reasons: ① F97<50.0HZ, or 60.0HZ ② F98>220.0/440.0V ③ F101>2.00HZ ④ F102>8.5V, 9.5V, 17.0V or 19.0V ⑤ F103<30% 	 Please check the following ex-factory set values of parameters: F97≥60.0HZ, or 50.0HZ F98≤200V, 220V, 380V, or 440V F101≤60.0 Hz/1.5Hz, or 50.0Hz/ 1.25Hz F102≤8.5V, 9.5V, 17.0V or 19.0V VT curve≥30%
Err 17	Program code error	• DSP processor failure	• Check the causes, take remedy actions and replace the ac drive or return it to factory for repair.

Most frequently used troubleshooting

(Any person other than a professional undertaker or a qualified technician of this machine is not allowed to troubleshoot the following failures; failure to obey this statement will void the liability for any incident occurred to this machine.).

Motor fails to rotate ?

Symptom : Motor fails to start its running.

§ Terminals of R.S.T. power supply energized?

- \rightarrow Energize the power supply
- \rightarrow Disconnect the power supply and re-energize it

§ Output of voltage from output terminals

U.V.W confirmed ?

- \rightarrow Confirm the power supply
- \rightarrow Follow the operating procedure to operate it

§ Motor's rotating shaft jammed?

- \rightarrow Lessen the motor load
- \rightarrow Examine the mechanical structure
- \rightarrow Replace motor with a new one

§ Wrong wiring?

- \rightarrow Examine and repair the wiring loops
- § Protection functions enabled?
 - \rightarrow Verify the displayed content in monitor
- § Incorrect setting to the operation keyboard ?
 - \rightarrow Reconfirm the operating procedures once again

Ac drive trips when starting the motor ?

Symptom : An error code Err2 appears when starting or accelerating the motor (it may caused by the enabled protection function of over-current, or a momentary output current in excess of 200% of rated current, or a damaged IGBT module).

Short of torque when started at heavy load?

 \rightarrow Change the parametric value for torque compensation

§ Acceleration time too short to match with the GD2 of load?

- \rightarrow Extend the acceleration time
- **§** Starting frequency too low ?
 - \rightarrow Increase the starting frequency

§ Protection function enabled?

 \rightarrow Confirm the display in the monitor

§ Ac drive started when motor is idling?

→ Set up the function: dc brake and start from zero frequency.

§ Incorrect setting to operation keyboard, electric leakage due to defective motor insulation?

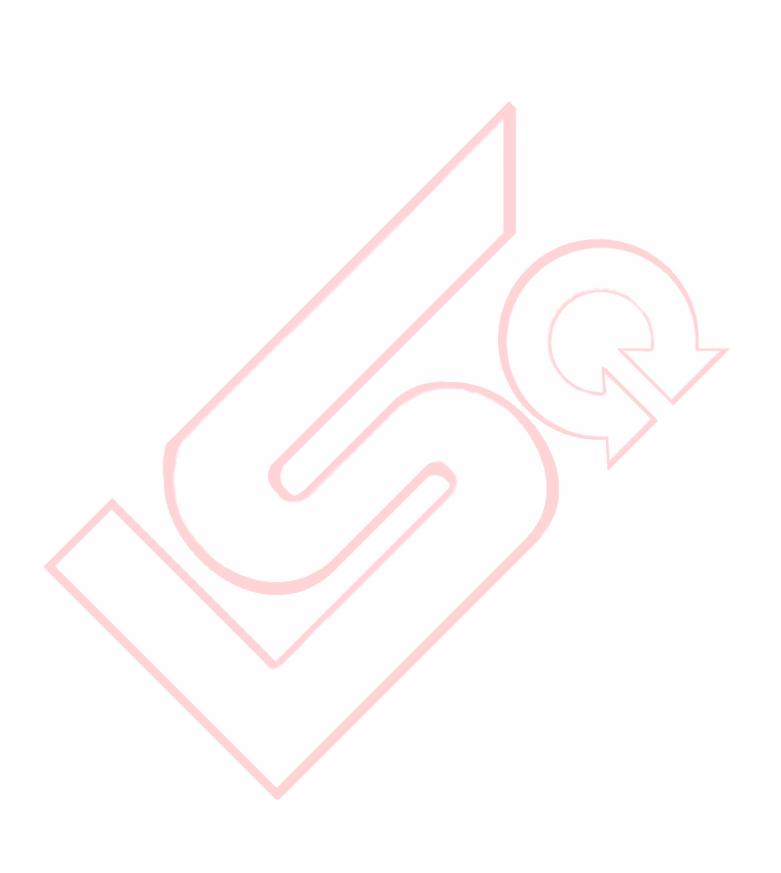
- \rightarrow Confirm it again
- → Replace it with a good motor, or remove the electric wire of output end and then re-supply the power to start it; if it still trips at Err2, then the ac does not trip at Err2, then the motor malfunctioned.

Ac drive trips when motor is decelerating?

Symptom : Err6 appears when decelerating the motor (Protective function of over-voltage enabled.)

- § The integral brake loop inside the ac drive failed to absorb the regenerative energy from motor during a sharp deceleration when the GD² of motor-driven load is too big?
 - * Over-voltage protection function will be enabled immediately when regenerative energy exceeds 414V (200~240V series) or 827V (380~460V series).
 - \rightarrow Extend the deceleration time
 - \rightarrow Mount a dc brake resistance (optional) exclusive-use for external application below
 - → Additional mounting of brake unit and resistance is necessary for application above 20HP

Trip during static operation ?


Err7 appears during operation

§ Voltage of power supply Low?

→ Review the capacity of power supply equipment and find out the cause to the short voltage; such as, check if the contacts of no-fuse-breaker of magnetic switch are in good condition.

Err6 appears during operation

- § Caused by load and motor or voltage of power supply?
- § Electric leakage due to bad motor insulation?
 - \rightarrow Additionally mount a dc brake resistance (optional) exclusive-use for external application.
 - → Remove the output wires, re-supply the power and start it; if it still trips at Err6, then the ac drive malfunctioned, if it does not trip at Err6, then the motor is troubled with electric leakage and shall be replaced with new one.

VII Maintenance, inspection & testing

Maintenance, inspection & testing

Points of attention for maintenance, inspection & testing

- A maintenance professional shall confirm the current status of power supply switch in person. In order to ensure the safety of operation, strictly keep the power switch from the reach of irrelevant personnel with an identification label hung on the switch.
- ➤ Within a short period of time right after disconnecting the power supply, there will be DC high voltage remained at the electrolytic capacitor of large capacity in the internal rectification loop of the ac drive. For this reason, please make sure to see if the [CHARGE] light is off before performing the substrate inspection.

Highlights of regular maintenance:

- External terminals, components and screws : Screws or connectors loosened ? → Redo mounting or fasten the screws.
- Cooling fan : Noise or abnormal vibration ?
- \rightarrow Replace or clean the cooling fan.
- Capacitors and parts : Any discoloration, carbonization or strange odor ?
- Heat sink fins and circuit boards : Deposited with dust or adhered with conductive iron chips or oil stain ?
- \rightarrow Send them back to factory for changing capacitorsor components of the ac drive.
- \rightarrow Use a pressurized air gun to blow dry air to clean them.

Routine check items

- > Motor follows the preset actions to run ? Any faulty sound or vibration during its running ?
- > Cooling fan mounted underneath the ac drive operates normally? Any abnormal heating condition ?
- \succ The output current detected by the monitor exceeds the normal value ?
- > The ambient temperature is normal? The installation environment is normal?

※ Please truly follow the check items listed in this manual to conduct them item by itemto ensure this product is always maintained at a normal state for a long time.

The ac drive is comprised of variety of components and takes the advantage of these parts & components to maintain and develop its expected functions. Because of it is an electronic part that will be worn somewhat by the working environment and operator's habit of using it, therefore, in order to obtain a normal operation for a long time, a regular check and replacement of parts & components is strongly recommended.

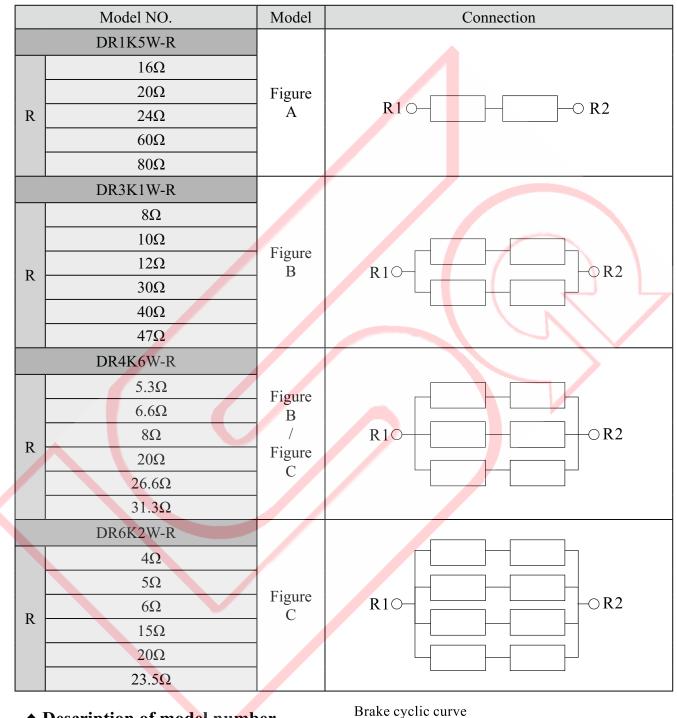
VIII Selection of brake resistance and brake unit

◆ Selection	of brake unit	
♦ Selection	of brake resistance	8-3

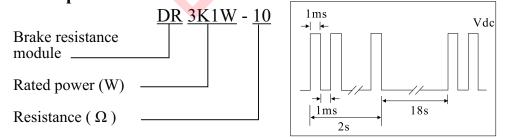
Selection of brake unit

After the brake resistance's continuous discharging, a high ambient temperature will be formed to endanger the articles around the brake resistance; therefore, please keep it away from the inflammables at a distance more than 2 meters and mount it at a well-ventilated place or mount an additional cooling fan for heat dissipation.

	Ac drive		Specifications							
Voltage	Appli mo capa	tor	Equivalent resistance specification	Brake torque (10%ED)	Equivalent Min resistance	Brake	r	Brake resistor	Specifications of externally mounted brake unit	Brake Unit
	HP	KW	W / Ω	%	value (Ω)	(Modul	e)	SET		SET
	0.5	0.4	150W/150Ω	225	75Ω					
	1	0.75	150W/150Ω	150	75Ω					
	2	1.5	300W/100Ω	125	39Ω					
	3	2.2	500W/60Ω	140	30Ω				Included	
	5	3.7	800W/40Ω	125	27Ω				included	
	7.5	5.5	1200W/ <mark>25</mark> Ω	135	18Ω	DR1K5W	7-24	1		
	10	7.5	1500W/20Ω	125	10Ω	DR1K5W	-20	1		
	15	11	2200W/13.6Ω	125	10Ω	DR3K1W	7-12	1		
200V	20 🛆	15	3000W/10Ω	125	6.6Ω	DR3K1W	-10	1	LSBR-2015B	1
200 V	25 🛆	18.5	3700W/8Ω	125	6.6Ω	DR4K6W	/-8	1	LSBR-2022B	1
	30 🛆	22	4400W/6.8Ω	125	3.3Ω	DR4K6W	-6.6	1	LSBR-2022B	1
	40 △	30	6000W/5Ω	125	3.3Ω	DR6K2W	7-5	1	LSBR-2015B	2
	50 🛆	37	$7400W/4\Omega$	125	3.3Ω	DR4K6W	/-8	2	LSBR-2022B	2
	60 🛆	45	9000W/3.3Ω	125	2.5Ω		LSBR-2022B	2		
	75 🛆	55	11000W/2.7Ω	125	2.5Ω	DR6K2W	/-5	2	LSBR-2022B	3
	100	75	15000W/2Ω	125		DR6K2W	/-6	3	LSBR-2022B	4
	125	90	18000W/1.6Ω	125		DR6K2W	/-5	3	LSBR-2022B	4 or 5
	150	110	22000W/1.3Ω	125		DR6K2W	/-5	4	LSBR-2022B	5
∆: An	additi	onal b	orake circuit car	be fitted	into the ac	drive when	n plac	cing the	purchase orde	r.


-Selection of brake resistance and brake unit- VIII

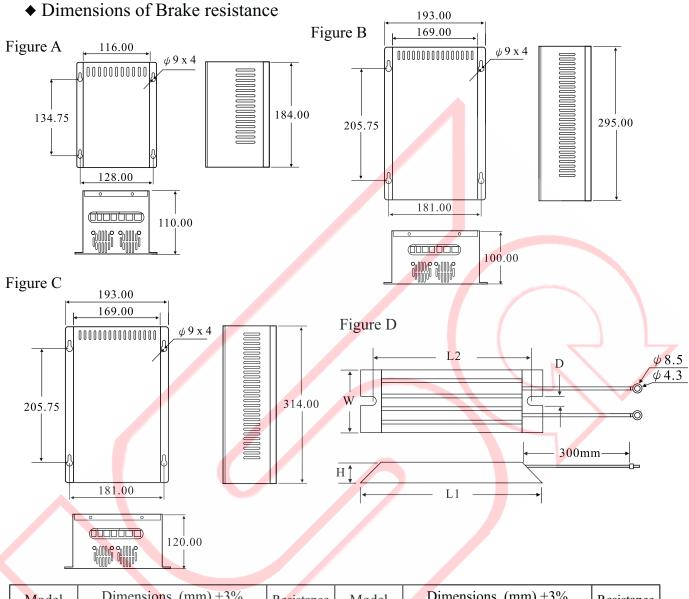
Ac drive							Specific	ations	
Voltage	Applicable motor capacity		Equivalent resistance specification	Brake torque (10%ED)	Equivalent Min resistance value	Brake resistor (Module)	Brake resistor /	Specifications of externally mounted	Brake Unit
	HP	KW	- W/Ω	%	(Ω)	(Wodule)	SET	brake unit	SET
400V	1	0.75	150W/300Ω	200	150Ω				
	2	1.5	300W/300Ω	155	150Ω				
	3	2.2	500W/150Ω	175	72Ω				
	5	3.7	800W100Ω	170	72Ω			Included	
	7.5	5.5	1200W/80Ω	155	40Ω	DR1K5W-80	1		
	10	7.5	1500W/60Ω	155	40Ω	DR1K5W-60	1		
	15	11	2200W/50Ω	135	40Ω	DR3K1W-47	1		
	20 🛆	15	3000W/40Ω	125	20Ω	DR3K1W-40	1	LSBR-4015B	1
	25 $ riangle$	18.5	3700W/32Ω	125	20Ω	DR4K6W-31.3	1	LSBR-4030B	1
	30 🛆	22	4400W/27.2Ω	125	20Ω	DR4K6W-26.6	1	LSBR-4030B	1
	40 $ riangle$	30	6000W/20Ω	125	14.3Ω	DR6K2W-20	1	LSBR-4030B	1
	50 🛆	37	7400W/16Ω	125	14.3Ω	DR4K6W-31.3	2	LSBR-4030B	2
	60 🛆	45	9000W/13.3Ω	125	10Ω	DR4K6W-26.6	2	LSBR-4030B	2
	75 🛆	55	11000W/10Ω	125	6.6Ω	DR6K2W-20	2	LSBR-4030B	2
	100	75	15000W/8Ω	125	6.6Ω	DR6K2W-23.5	3	LSBR-4030B	3
	125	90	18000W/6.6Ω	125		DR6K2W-20	3	LSBR-4030B	3
	150	110	22000W/5.4Ω	125		DR6K2W-20	4	LSBR-4030B	4
	175	132	26400W/4.5Ω	125		DR6K2W-20	4	LSBR-4030B	5
	200	160	32000W/3.7Ω	125		DR6K2W-20	5	LSBR-4030B	6
	250	185	37000W/3.2Ω	125		DR6K2W-20	6	LSBR-4030B	7
	300	220	44000W/2.7Ω	125		DR6K2W-20	8	LSBR-4030B	8
	350	260	52000W/2.3Ω	125		DR6K2W-20	9	LSBR-4030B	9
\triangle : An	additi	onal b	brake circuit car	be fitted	into the ac	drive when pla	cing the	purchase orde	r.


VIII -Selection of brake resistance and brake unit-

Selection of brake resistance

DR brake resistance specifications

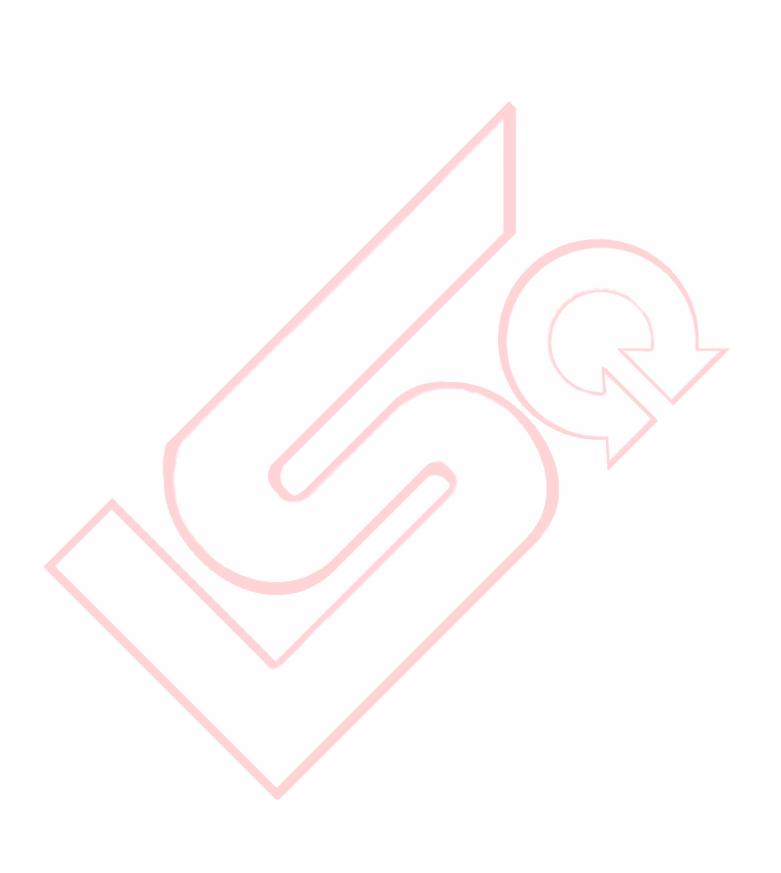
Description of model number


Brake power conditions :

- 1. Duty/Cycle :1ma/2ms
- 2. Brake time ÷ 2s

3. Rest time : 18s

Work frequency (ED%): ED%= $\frac{2s}{20s}$ ×100%=10%


-Selection of brake resistance and brake unit- VIII

Model	Di	mensi	ons (n	$m) \pm 3$	%	Resistance	Model	Di	mensi	ons (n	nm) ±3	%	Resistance
No.	L1	L2	Η	D	W	range (Ω)	No.	L1	L2	Η	D	W	range (Ω)
SDR80W	140	125	20	5.2	40	0.1~10K	SDR300W	215	200	30	5.2	60	0.5~30K
SDR100W	165	150	20	5.2	40	0.1~10K	SDR400W	265	250	30	5.2	60	0.5~30K
SDR120W	190	175	20	5.2	40	0.15~15K	SDR500W	335	320	30	5.2	60	0.5~30K
SDR150W	215	200	20	5.2	40	0.15~15K	SDR600W	335	320	30	5.2	60	1~50K
SDR200W	165	150	30	5.2	60	0.3~20K	SDR800W	400	385	40	5.2	80	1~50K

NOTE

- 1. Please select the resistance (ohms), watts and the frequency of application (ED %) specified by the Company.
- 2. A precaution toward the safety and inflammability around the peripheral environment shall be made when installing the brake resistance.
- 3. For an application with more than two sets of brake unit, please pay attention to the equivalent resistance after installing these brake units in parallel connection that shall not be lower than the equivalent minimum resistance of each ac drive. When using the brake unit is desired, please peruse the operation instruction of brake unit and connect the wirings accordingly.

IX Appendix

٠	A: Standard specifications	
٠	B: Ex-factory set values	10-1
	C: Summary of parameter settings	
	D: Summary of Err codes and diagnost	ic
	descriptions	12-1
٠	E: Dimensional drawings of mechanism	

		1																		
Mod	del No.LS650-2	0K2	0K4	0K7	1K5	2K2	4K0	5K5	7K5	011	015	018	022	030	037	045	055	075	090	110
App	blicable motor power (KW)	0.2	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
App	blicable motor power (HP)	0.25	0.5	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125	150
	Rated output capacity(KVA)	0.6	1.2	1.7	2.7	3.8	6.4	9.5	12.5	17.5	23	29	34	45	57	68	82	114	133	162
	Continuous rated current (A)	1.6	3.2	4.5	7.0	10	17	25	33	46	62	76	90	120	150	180	215	300	350	425
Output	Max. output voltage (V)			•				3-pha	ase co	orresp	ondir	ng inp	out vo	ltage	•	•		•	•	
	Output frequency range (Hz)									0.00~	-300.	00Hz								
	Carrier frequency(Hz)			16	(HZ				12KHZ			10KHZ			8KHZ		6K	HZ	5KHZ	зкнг
P	Input voltage, frequency						3-ph	ase p	ower	supp!	ly 200	0V~2	40V	50/6	0HZ					
Power supply	Tolerance for voltage fluctuation of power supply								±1	.0%(1	180V	~264	V)				\leq			
ply	Tolerance for frequency fluctuation of power supply								±8	%(46	HZ~(54.8H	Z)			J				
	Cooling fan									Fo	rced t	fan				-				
40	0V series s	pec	ific	cati	on	S														VT series

400V series specifications

1 No.LS650-4	0K7	1K5	2K2	4K0	5K5	7K5	011	015	018	022	030	037	045	055	075	090	110	132	160	185	220	260
pplicable motor power (KW)	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	260
pplicable motor power (HP)	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125	150	175	200	250	300	350
Rated output capacity(KVA)	2.4	3.4	5.3	6.8	9.5	13	19	24	30	34	47	57	70	87	110	144	164	210	228	265	340	395
Continuous rated current (A)	3.2	4.5	7.0	9.0	12.5	17	25	32	40	46	62	75	92	115	150	180	216	275	300	350	450	530
Max. output voltage (V)								3-ph	ase c	orre	spon	ding	inpu	t vol	tage							
Output frequency range (Hz)										0.0	0~30	00.00	Hz									
Carrier frequency(Hz)		16	KHZ		1	12KHZ	2	1	IOKHZ	2		8KHZ		6K	HZ	5K	HZ	4K	HZ		3KHZ	
Input voltage, frequency							3-ph	ase p	owe	r sup	ply (380V	/~46	0V	50/6	0HZ						
Olerance for voltage Auctuation of power supply									Ŧ	-10%	5(342	2V~5	06V)								
Tolerance for requency fluctuation of power supply									±	8%(4	46HZ	Z~64	.8HZ	Z)								
Cooling fan										F	Force	ed fai	1									
	power (KW) pplicable motor power (HP) Rated output capacity(KVA) Continuous rated current (A) Max. output voltage (V) Output frequency range (Hz) Carrier frequency(Hz) Input voltage, frequency olerance for voltage luctuation of power supply Tolerance for requency fluctuation of power supply	power (KW) 0.75 pplicable motor power (HP) 1 Rated output capacity(KVA) 2.4 Continuous rated current (A) 3.2 Max. output voltage (V) 3.2 Output frequency range (Hz) - Carrier frequency(Hz) - Input voltage, frequency - olerance for voltage luctuation of power supply - Tolerance for requency fluctuation of power supply -	power (KW) 0.75 1.5 power (KW) 1 2 Pplicable motor power (HP) 1 2 Rated output capacity(KVA) 2.4 3.4 Continuous rated current (A) 3.2 4.5 Max. output voltage (V) 3.2 4.5 Max. output voltage (V) 4.5 Output frequency range (Hz) 16 Carrier frequency(Hz) 16 Input voltage, frequency olerance for voltage luctuation of power supply 16 Tolerance for requency fluctuation of power supply 15	power (KW)0.751.52.2pplicable motor power (HP)123Rated output capacity(KVA)2.43.45.3Continuous rated current (A)3.24.57.0Max. output voltage (V)3.24.57.0Output frequency range (Hz)	power (KW)0.751.52.24.0pplicable motor power (HP)1235Rated output capacity(KVA)2.43.45.36.8Continuous rated current (A)3.24.57.09.0Max. output voltage (V)3.24.57.09.0Output frequency range (Hz)16KHZ16KHZ16KHZInput voltage, frequency olerance for voltage luctuation of power supply16KHZ16KHZ	power (KW)0.751.52.24.05.5pplicable motor power (HP)12357.5Rated output capacity(KVA)2.43.45.36.89.5Continuous rated current (A)3.24.57.09.012.5Max. output voltage (V)3.24.57.09.012.5Output frequency range (Hz)16KHZ111Input voltage, frequency16KHZ11Input voltage, frequency1111Olerance for voltage luctuation of power supply1111Tolerance for requency fluctuation of power supply1111	power (KW)0.751.52.24.05.57.5pplicable motor power (HP)12357.510Rated output capacity(KVA)2.43.45.36.89.513Continuous rated current (A)3.24.57.09.012.517Max. output voltage (V)3.24.57.09.012.517Output frequency range (Hz)16KHZ12KHZ12KHZInput voltage, frequency16KHZ12KHZInput voltage, frequency16KHZ12KHZInput voltage, frequency16KHZ12KHZInput voltage, frequency16KHZ12KHZInput voltage, frequency16KHZ12KHZInput voltage, frequency16KHZ12KHZInput voltage, frequency16KHZ12KHZInput voltage, frequency16KHZ12KHZInput voltage, frequency16KHZ12KHZInput voltage, frequency1010Input voltage, frequency1010Output supply1010Input voltage, frequency1010Input voltage, frequency1010Input voltage, frequency1010Input voltage, frequency1010Input voltage, frequency1010Input voltage, frequency1010Input voltage, frequency1010Input voltage, frequency<	power (KW)0.751.52.24.05.57.511pplicable motor power (HP)12357.51015Rated output capacity(KVA)2.43.45.36.89.51319Continuous rated current (A)3.24.57.09.012.51725Max. output voltage (V)3.24.57.09.012.51725Max. output voltage (V)Carrier frequency(Hz)16KHZ12KHZ12KHZInput voltage, frequency olerance for voltage luctuation of power supply3-ph	power (KW) 0.75 1.5 2.2 4.0 5.5 7.5 11 15 pplicable motor power (HP) 1 2 3 5 7.5 10 15 20 Rated output capacity(KVA) 2.4 3.4 5.3 6.8 9.5 13 19 24 Continuous rated current (A) 3.2 4.5 7.0 9.0 12.5 17 25 32 Max. output voltage (V) 3.2 4.5 7.0 9.0 12.5 17 25 32 Output frequency range (Hz) 16KHZ 12KHZ 3-phase p 3-phase p Input voltage, frequency 16KHZ 12KHZ 3-phase p olerance for voltage 3-phase p 3-phase p for equency fluctuation of power supply 5 5 5 5 5	power (KW) 0.75 1.5 2.2 4.0 5.5 7.5 11 15 18.5 pplicable motor power (HP) 1 2 3 5 7.5 10 15 20 25 Rated output capacity(KVA) 2.4 3.4 5.3 6.8 9.5 13 19 24 30 Continuous rated current (A) 3.2 4.5 7.0 9.0 12.5 17 25 32 40 Max. output voltage (V) 3.2 4.5 7.0 9.0 12.5 17 25 32 40 Output frequency range (Hz) 16KHZ 12KHZ 10KHZ 10KHZ Input voltage, frequency 16KHZ 12KHZ 10KHZ 10KHZ Input voltage, frequency 3-phase powe 3-phase powe 4 4 olerance for voltage 5 5 5 5 5 5 5 Tolerance for requency fluctuation of power supply 4 5 5 5 5 5 5 5 5 5 5 5 5	Power (KW)0.751.52.24.05.57.5111518.522pplicable motor power (HP)12357.51015202530Rated output capacity(KVA)2.43.45.36.89.51319243034Continuous rated current (A)3.24.57.09.012.51725324046Max. output voltage (V)3.24.57.09.012.51725324046Max. output voltage (V)3.24.57.09.012.51725324046Max. output voltage (V)16KHZ12KHZ10KHZ10.0Carrier frequency range (Hz)16KHZ12KHZ10KHZ10KHZInput voltage, frequency supply3-phase power sup $\pm 10\%$ Olerance for voltage luctuation of power supply $\pm 8\%(4)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	power (KW) 0.75 1.5 2.2 4.0 5.5 7.5 11 15 18.5 22 30 37 pplicable motor power (HP) 1 2 3 5 7.5 10 15 20 25 30 40 50 Rated output capacity(KVA) 2.4 3.4 5.3 6.8 9.5 13 19 24 30 34 47 57 Continuous rated current (A) 3.2 4.5 7.0 9.0 12.5 17 25 32 40 46 62 75 Max. output voltage (V) 3.2 4.5 7.0 9.0 12.5 17 25 32 40 46 62 75 Max. output voltage (V) 3.2 4.5 7.0 9.0 12.5 17 25 32 40 46 62 75 Max. output voltage (V) 3.2 16KHZ 12KHZ 10KHZ 8KHZ 100~300.00 Input voltage, frequency 16KHZ 12KHZ 10KHZ 380V $\pm 10\%(342V\sim5)$ $\pm $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Power (KW) 0.75 1.5 2.2 4.0 5.5 7.5 11 15 18.5 22 30 37 45 35 7.5 90 110 132 160 185 pplicable motor power (HP) 1 2 3 5 7.5 10 15 20 25 30 40 50 60 75 100 125 150 175 200 250 Rated output capacity(KVA) 2.4 3.4 5.3 6.8 9.5 13 19 24 30 34 47 57 70 87 110 144 164 210 228 265 Continuous rated current (A) 3.2 4.5 7.0 9.0 12.5 17 25 32 40 46 62 75 92 180 180 216 275 300 350 Max. output voltage (V) 3.2 4.5 7.0 9.0 12.5 17 25 32 40 46 62 75 92 115 180 21.6 </td <td>Power (KW) 0.75 1.5 2.2 4.0 5.5 7.5 11 15 8.5 2.2 30 37 45 55 75 90 110 132 160 185 220 pplicable motor power (HP) 1 2 3 5 7.5 10 15 20 25 30 40 50 60 75 100 125 150 175 200 250 300 Rated output capacity(KVA) 2.4 3.4 5.3 6.8 9.5 13 19 24 30 34 47 57 70 87 110 144 164 210 228 265 340 Continuous rated current (A) 3.2 4.5 7.0 9.0 12.5 17 25 32 40 46 62 75 92 115 180 216 275 300 350 450 Max. output voltage (V) 16 16 17 12.5 17 12.5 17 12.5 16 17.5 18.5 1</td>	Power (KW) 0.75 1.5 2.2 4.0 5.5 7.5 11 15 8.5 2.2 30 37 45 55 75 90 110 132 160 185 220 pplicable motor power (HP) 1 2 3 5 7.5 10 15 20 25 30 40 50 60 75 100 125 150 175 200 250 300 Rated output capacity(KVA) 2.4 3.4 5.3 6.8 9.5 13 19 24 30 34 47 57 70 87 110 144 164 210 228 265 340 Continuous rated current (A) 3.2 4.5 7.0 9.0 12.5 17 25 32 40 46 62 75 92 115 180 216 275 300 350 450 Max. output voltage (V) 16 16 17 12.5 17 12.5 17 12.5 16 17.5 18.5 1

Common characteristics

	Control method	Sine wave SVPWM 3-phase modulation, switching frequency 2K~16KHZ, V/F voltage vector control
	Max. output frequency	0.00~300.00Hz
	Frequency precision (temperature fluctuation)	Digital signal: ±0.1%(-10°C~+40°C), analog signal: ±0.1%(25°C±10°C)
	Precision for frequency setup	Digital signal: 0.01Hz(0.01~300.0 <mark>0H</mark> z), analog signal: 0.06/60.00Hz
	Precision for speed regulation	Voltage sensor-less vector : ± 1.0 %, V/F : $\pm 3.0\% \sim 5.0\%$
Control	Acceleration / deceleration time	0.0~3000.0(seconds), 8-stage individual & independent setup of acceleration /deceleration time duration.
trol	V/F curve	CT : 3-point straight line setup, CT/VT : 2-point curve setup
	Control functions	15 display functions, 9 rpm command sources, upper & lower frequency setup, AVR function, S-curve, multiplexing input, output terminal control, 16 preset stages for speed regulation, Jumping frequency, slip compensation, PID function, exclusive PID for water pump, functional setup for intelligent water pump, DC brake at on/off, simple PLC for operation control, MODBUS communication, Auto operation function.
	Signal for frequency setup	DC 0~10V, 0~20mA
	Brake torque	20% approximately, 125% with brake controller mounted.
	Additional control functions	Digital operation panel, RS-485, speed regulation, PID control, multi-stage speed control, water pump functions, etc.
	Motor protection	Protected by an integral type electronic thermal-activated relay
P	Over-current protection	 CT : Exceeding the rated current by 200% for 3 seconds will trigger the over- current protection to stop motor automatically. VT : Exceeding the rated current by 170% for 3 seconds will trigger the over- current protection to stop motor automatically.
rote	Overload ability of ac drive	CT : 150%,60 Second / VT : 120%,60 Second
ctio	Over-voltage protection	Over-voltage level : Vdc > 414V(200~240V Series) / Vdc > 827V(380~460V Series)
n fur	Low-voltage protection	Low-voltage level : Vdc < 200V(200~240V Series) / Vdc < 400V(380~460V Series)
Protection functions	Power supply protection	Under phase protection for input power supply (equipped for ac drive with a power above 5.5KW), under phase protection for output (equipped for ac drive with a power above 0.4KW)
	Superheating heat radiation fins	Thermal coupler protection 85°C±5°C
	Stall protection	To protect the device from stall during acceleration/deceleration and operation.
	Grounding protection	To protect electronic circuits.
	Charging indication	Charging indicator will be turned "ON" when the DC voltage of main circuit is over 50V.
	Place used	Indoor places free of corrosion or dusts.
Environment conditions	Ambient temperature	-10°C~+40°C(Lock wall-mounting model), -10°C~+50°C(open model) free of freezing condition
litio	Storage temperature (Note 1)	-20°C~+60°C
men ns	Humidity	Below 95%RH (no condensation condition)
Ĩt	Vibration	1G below 20Hz, 0.2G during 20~50Hz
* N	ote 1 : A too high storage ter	nperature may damage the capacitor of main circuit.

Appendix-B-Ex-factory set values-

200V Series

Horse power	KW	20K4	20K7	21K5	22K2	24K0	25K5	27K5	2011	2015
rse ver	HP	0.5	1.0	2.0	3.0	5.0	7.5	10	15	20
Paran a:	F88		set value of f ging the frequ			; the rated fre	quency (40HZ	Z~70HZ) of r	notor shall be	observed
Parameters of motor and ac drive	F89		set value of v ne voltage is o		V or 220V, th	e rated voltag	ge (150V~255	V) of motor	shall be obser	ved when
of n rivi	F90	2.0A	3.5A	6.0A	8.2A	15A	20A	27A	38A	50A
note	F93	5000	5000	5000	5000	5000	5 <mark>00</mark> 0	5000	5000	5000
JLC	F94	134	134	134	134	134	135	135	135	138
	F95	3.2A	4.5A	7.0A	10A	17A	2 <mark>5A</mark>	33A	46A	62A
	F96	* Please se	-	e according to	the application	nt curve setu on when setti			, curve gain s erequisite:	etup F103
	F97(Hz)	50/60	50/60	50/60	50/60	50/60	5 <mark>0/6</mark> 0	50/60	50/60	50/60
V/F	F98(V)	200/220	200/220	200/220	200/220	200/220	200/220	200/220	200/220	200/220
	F99(Hz)	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00
rve	F100(V)	15.0/16.5	15.0/16.5	15.0/16.5	15.0/16.5	15.0/16.5	13.0/14.5	13.0/14.5	13.0/14.5	13.0/14.5
curve setup	F101(Hz)	1.25/1.50	1.25/1.50	1.25/1.50	1.25/1.50	1.25/1.50	1.2 <mark>5/1</mark> .50	1.25/1.50	1.25/1.50	1.25/1.50
q	F102(V)	8.5 / 9.5	8.5 / 9.5	8.5 / 9.5	8.5 / 9.5	8.5 / 9.5	7. <mark>0 /</mark> 7.5	7.0 / 7.5	7.0 / 7.5	7.0 / 7.5
	F103	0.0	% : Straight	line			().1% ~ 100%	% : 3-time cu	irve
		120%, 60 limited :	ode, $F96 = 1 \text{ w}$ seconds with (1) $F97 \ge 50.00$ (2) $F98 \ge 2000$ (3) $F101 \le 2.000$	h the followin 00 Hz or 60.0 .0V or 220.0	ng ranges of p 00Hz	arameters (4) F102 (5) F103	$\leq 8.5 \text{V}/200 \text{V}$	or 9.5V/220 be limited w	vith Err-16 wa	

1	Horse	KW	2018	2022	2030	2037	2045	2055	2075	2090	2110
	rse ver	HP	25	30	40	50	60	75	100	125	150
	Parar	F88		set value of f ging the frequ			; the rated fre	quency (40HZ	Z~70HZ) of n	notor shall be	observed
	Parameters and ac c	F89		set value of v he voltage is o		V or 220V, th	e rated voltag	ge (150V~255	V) of motor s	shall be obser	ved when
	of n	F90	62A	75A	97A	128A	150A	187A	235A	300A	355A
	s of motor drive	F93	5000	5000	5000	5000	5000	3000	3000	3000	2000
	H	F94	138	138	138	138	138	138	138	138	138
		F95	76A	90A	120A	150A	180A	215A	300A	350A	425A
		F96	* Please se		e according to	the applicati	nt curve setu on when setti				setup F103
		F97(Hz)	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60
	V/F	F98(V)	200/220	200/220	200/220	200/220	200/220	200/220	200/220	200/220	200/220
		F99(Hz)	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00	2.50/3.00
	curve s	F100(V)	11.0/12.5	11.0/12.5	11.0/12.5	11.0/12.5	10.0/11.5	10.0/11.5	10.0/11.5	10.0/11.5	10.0/11.5
	setup	F101(Hz)	1.25/1.50	1.25/1.50	1.25/1.50	1.25/1.50	1.25/1.50	1.25/1.50	1.25/1.50	1.25/1.50	1.25/1.50
		F102(V)	6.0/7.0	6.0/7.0	6.0/7.0	6.0/7.0	5.0/6.0	5.0/6.0	5.0/6.0	5.0/6.0	5.0/6.0
		F103	0.0	% : Straight	line			(0.1% ~ 100%	% : 3-time cu	irve
			120%, 6	0 seconds with (1) F97 \ge 50	th the followin .00 Hz or 60. 0.0V or 220.0	ng ranges of p 00Hz	(4) F102 (5) F103	load protectio $\leq 8.5 \text{V}/200 \text{V}$ $\geq 30.0\%$, will ayed when ex	v or 9.5V/220 Il be limited v	V vith Err-16 w	

V

Horse power	KW	40K7	41K5	42K2	44K0	45K5	47K5	4011	4015	4018	4022	4030
rse ver	HP	1	2	3	5	7.5	10	15	20	25	30	40
Parar a	F88		ry set value anging the		ncy is 50Hz is desired.	or 60Hz; t	he rated fre	equency (40)HZ~70HZ) of motor :	shall be obs	served
Parameters of motor and ac drive	F89		ry set value g the voltag		e is 380V or l.	: 440V, the	rated volta	ge (300V~:	510V) of m	otor shall b	e observed	when
of n lrive	F90	1.9A	3.7A	5.3A	8.2A	12A	15A	22A	28A	36A	44A	58A
note	F93	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000
Эľ	F94	269	269	269	269	269	269	269	277	277	277	277
	F95	3.2A	4.5A	7.0A	9.0A	12.5A	17A	25A	32A	40A	46A	62A
	F96	* Please	set up the c	urve accor	$97 \sim F102$) ding to the 00 > F102.	application						o F103
	F97(Hz)	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60
V/F	F98(V)	380/440	380/440	380/440	380/440	380/440	380/440	380/440	380/440	380/440	380/440	380/440
	F99(Hz)	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0
rve :	F100(V)	28.5/33	28.5/33	28.5/33	28.5/33	25.5/29	25.5/29	25.5/29	25.5/29	21.5/25	21.5/25	21.5/25
curve setup	F101(Hz)	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1 <mark>.5</mark>	1.25/1.5	1.25/1.5	1.25/1.5	1. 2 5/1.5
	F102(V)	17 / 19	17 / 19	17 / 19	17 / 19	14 / 15	14 / 15	14 / <mark>15</mark>	14 / 15	12/14	12/14	1 <mark>2</mark> /14
	F103	0).0% : Stra	aight line					0.1%~	100% : 3-	time curv	e
		120%,	, 60 second d : (1) F97 (2) F98	ls with the	e set autom following r or 60.00H r 440.0V	anges of pa	arameters (4) F102 (5) F103	load protect $2 \le 17.0 \text{V/3}$ $3 \ge 30.0\%$, layed when	80V or 19. will be lim	0V/440V ited with E		

po	Hc	KW	<mark>40</mark> 37	4045	4055	4075	4090	4110	4132	41 <mark>60</mark>	4185	4220	4260(VT)
Wel	Horse	HP	50	60	75	100	125	150	175	200	250	300	350
	Para	F88		ry set value anging the			or 60Hz; t	he rated fre	equency (40	HZ~70HZ) of motor s	shall be obs	served
	Parameters	F89		ry set value g the voltag			: 440V, the	rated volta	ge (300V~5	510V) of m	otor shall b	e observed	when
ALIT	f	F90	72A	84A	108A	135A	165A	210A	260A	290A	340A	385A	480A
a	s of motor	F93	5000	5000	4000	4000	3000	3000	3000	3000	2000	2000	2000
	⁹	F94	277	277	277	277	277	277	277	277	277	277	277
		F95	75A	90A	115A	150A	180A	216A	275A	300A	350A	450A	520A
		F96	* Please	set up the c	urve accor		application		p (F97, F9 ng the V/F				F103
		F97(Hz)	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60
	V/F	F98(V)	380/440	380/440	380/440	380/440	380/440	380/440	380/440	380/440	380/440	380/440	380/440
	e curve	F99(Hz)	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0	2.5/3.0
	rve s	F100(V)	21.5/25	19.5/23	19.5/23	19.5/23	19.5/23	19.5/23	17.5/21	17.5/21	17.5/21	17.5/21	17.5/21
	setup	F101(Hz)	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5	1.25/1.5
	Ŭ [F102(V)	12/14	10/12	10/12	10/12	10/12	10/12	8.0/10	8.0/10	8.0/10	8.0/10	8.0/10
		F103		0.0% : St	raight line					0.1% ~	~ 100% : 3	-time cur	ve
			120%,	, 60 second d : (1) F97 (2) F98	ls with the	following r or 60.00H	anges of pa	arameters (4) F102 (5) F103	bad protection $2 \le 17.0 \text{V}/3$ $3 \ge 30.0\%$, layed when	80V or 19. will be lim	0V/440V ited with E		

	C1								
1	Changeable during operation	Parameter code	Descriptions		Sett ran		Unit	Ex-factory set value	Page No.
¥	×	F0	Water pressure set value		0.0~	10.0	Kg/cm ²	2.0	P5-1
water pump setup	×	F1	Setup to activate terminal af restoring the power supply	ter	0~	-1		0	P3-1
dumo	0 : D	irect activat	e 1 : Command	terminal 1	reset and t	hen activa	ate		
setuj	×	F2	Reserved		-32767-	~ <mark>3</mark> 2767		0	
	×	F3	Reserved		-32767-	~ <mark>3</mark> 2767		0	P5-1
Displi	0	F4	Select the variables to be dis in operation panal	splayed	0~	16		1	
Display setup for operation panel	0 : Frequenc 1 : Output fr 2 : Output cu 3 : Output vo 4 : Unitless (15~16 : Rese	equency (H) urrent (A) bltage (E) U)		ore startup	(Vdc) 11 : 12 : 13 :	Water pre	us values of essure of wa of cycle, nur		ıls
n pan	\bigcirc	F5	Unitless indication of magni	fication	0.01~3	00.00		30.00	
le]	\bigcirc	F6	Indication of filtration duration	ion	0~	15		6	P5-2
	×	F7	Operation control source		0~	-1	\sim	0	P5-3
	0 : Dig	gital operati	on panel or MODBUS comm	unication	1 : E	Digital inp	ut terminal		
Op	×	F8	Frequency command source		0~	-8		1	P5-3
Operation control param		al operation ation panel A		2 1+Ai2 1, Ai2 / M	AX	7 : PIL 8 : Dig	tal termina	ls for progress deceleration	sive
rol p	×	F9	Braking time before start up		0.0~1	20.0	Second	0.0	
aram	×	F10	Braking current before start	up	0.0~1	00.0	%	30.0	P5-4
leters	×	F11	Shutdown mode		0~	-2		1	
	0 : Fre	e-Run	1 : Dynamic shutdown	2 :]	Dynamic -	+ DC bral	ke		
	×	F12	Braking time for shutdown		0.0~1	20.0	Second	0.0	P5-4
	×	F13	Braking current for shutdow	m	0.0~1	00.0	%	30.0	P3-4
	×	F14	To restrict the rotating direct	tion	0~	-3		1	P5-5
RPI	0 : For	FWD or RI	EV 1 : For FWD only	2 : Fo	r REV onl	у 3	: REV at b	ias is available	
RPM restriction	×	F15	Lower limit of frequency	F16≥F15	0.00~3	00.00	Hz	0.00	P5-5
tricti	×	F16	Upper limit of frequency	r10 <u>~</u> 113	0.00~3	00.00	Hz	60.00 50.00	1 5-5
on	×	F17	To select the minimum output f	requency	0~	-1		0	P5-6
	0 : Ca	in be zero sj	peed 1 : Minimum	output fre	equency se	etup (F10	1)		
	0	F18	Main speed		0.00~3	00.00	Hz	5.00	P5-6
	\bigcirc	F19	Stage 1 speed		0.00~3	00.00	Hz	5.00	100

-Summary of parameter settings-Appendix-C

2	Changeable during operation	Parameter code	Descriptions	Setting range	Unit	Ex-factory set value	Page No.
	\bigcirc	F20	Stage 2 speed	0.00~300.00	Hz	10.00	
	0	F21	Stage 3 speed	0.00~300.00	Hz	15.00	
Mu	0	F22	Stage 4 speed	0.00~300.00	Hz	20.00	
ılti-st	0	F23	Stage 5 speed	0.00~ <mark>30</mark> 0.00	Hz	30.00	
age s	0	F24	Stage 6 speed	0.00~ <mark>30</mark> 0.00	Hz	40.00	
Multi-stage speed frequency command setup	\bigcirc	F25	Stage 7 speed	0.00~ <mark>30</mark> 0.00	Hz	50.00	
freq	\bigcirc	F26	Stage 8 speed	0.00~ <mark>30</mark> 0.00	Hz	0.00	
uenc	\bigcirc	F27	Stage 9 speed	0.00~300.00	Hz	0.00	P5-6
y cor	\bigcirc	F28	Stage 10 speed	0.00~300.00	Hz	0.00	
nmar	\bigcirc	F29	Stage 11 speed	0.00~3 <mark>0</mark> 0.00	Hz	0.00	
nd se	\bigcirc	F30	Stage 12 speed	0.00~300.00	Hz	0.00	
tup	\bigcirc	F31	Stage 13 speed	0.00~300.00	Hz	0.00	L
	\bigcirc	F32	Stage 14 speed	0.00~300.00	Hz	0.00	
	\bigcirc	F33	Stage 15 speed	0.00~300.00	Hz	0.00	
	\bigcirc	F34	Inching speed	0.00~300.00	Hz	6.00	
	0	F35	Master speed (inching) acceleration time/ With Acceleration time by speed at stage 8	0.0~3000.0	Second	10.0	
	0	F36	Master speed (inching) deceleration time/ With deceleration time by speed at stage 8	0.0~3000.0	Second	10.0	
		F37	Acceleration time of stage 1,9	0.0~3000.0	Second	10.0	
	\bigcirc	F38	Deceleration time of stage 1,9	0.0~3000.0	Second	10.0	
⊳	\bigcirc	F39	Acceleration time of stage 2,10	0.0~3000.0	Second	10.0	
Accel	\bigcirc	F40	Deceleration time of stage 2,10	0.0~3000.0	Second	10.0	
eratic	0	F41	Acceleration time of stage 3,11	0.0~3000.0	Second	10.0	
on/d	0	F42	Deceleration time of stage 3,11	0.0~3000.0	Second	10.0	
celeration / deceleration time	0	F43	Acceleration time of stage 4,12	0.0~3000.0	Second	10.0	P5-7
ratio	\bigcirc	F44	Deceleration time of stage 4,12	0.0~3000.0	Second	10.0	
n tim	\bigcirc	F45	Acceleration time of stage 5,13	0.0~3000.0	Second	10.0	
le	\bigcirc	F46	Deceleration time of stage 5,13	0.0~3000.0	Second	10.0	
	\bigcirc	F47	Acceleration time of stage 6,14	0.0~3000.0	Second	10.0	
	\bigcirc	F48	Deceleration time of stage 6,14	0.0~3000.0	Second	10.0	
	\bigcirc	F49	Acceleration time of stage 7,15	0.0~3000.0	Second	10.0	
	0	F50	Deceleration time of stage 7,15	0.0~3000.0	Second	10.0	
	\bigcirc	F51	Acceleration S curve	0.0~100.0	%	0.0	
	\bigcirc	F52	Deceleration S curve	0.0~100.0	%	0.0	

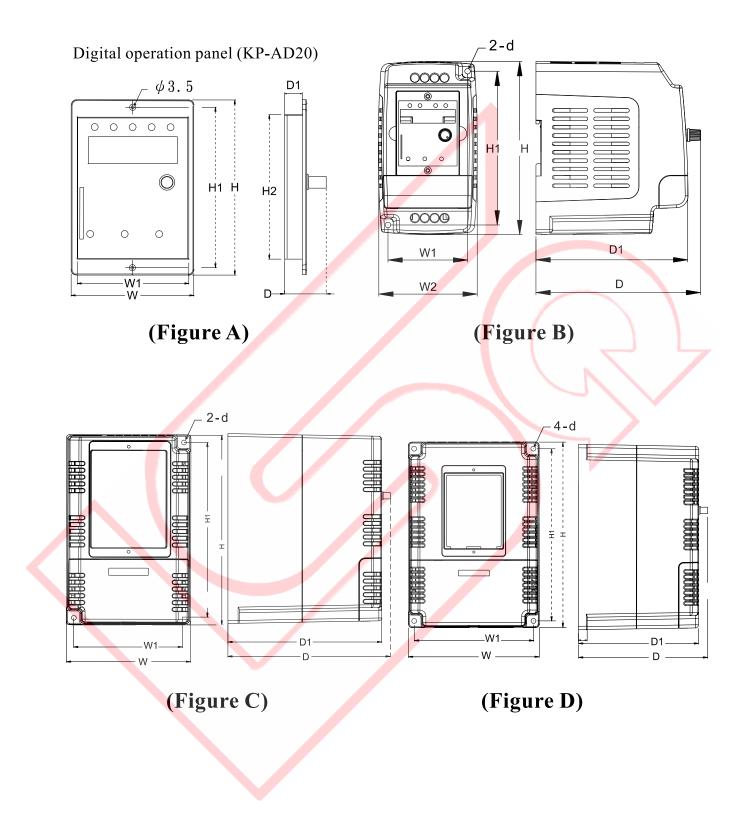
3	hangeable during operation	Parameter code	I	Descriptions	Setting range	e	Unit	Ex-factory set value	Page No.	
	×	F53	Ai:0V Inp	out bias %	-300.00~300.0	00	%	0.00	P5-8	
	×	F54	Ai:5V In	put gain %	-300.00~300.0	00	%	100.00	1 5-8	
	×	F55	Ai1:0V Ir	nput bias %	-300.00 <mark>~3</mark> 00.0	00	%	0.00		
Ana	×	F56	Ai1:10V	Input gain %	-300.00~300.0	00	%	100.00		
Analog input	×	F57	Ai1 Insensiti	ive area (Dead Band)	0.00~85.00		%	0.00		
nput	×	F58	Ail Filtration	n time setup	0.01~5.00		Second	0.30	P5-10	
	×	F59	Ai2:0V Ir	nput bias %	-300.00 <mark>~3</mark> 00.0	00	%	0.00	15 10	
	×	F60	Ai2:10V I	nput gain %	-300.00~300.0	00	%	100.00		
	×	F61	Ai2 Insensiti	ve area (Dead Band)	0.00~85.00		%	0.00		
	×	F62	Ai2 Filtration	n time setup	0.01~5.00		Second	0.30		
	\bigcirc	F63	A out functi	on of analog variable	0~7			0	P5-12	
		ction of variable	F65 10V/ corresponding value	Reference standard point	ros function of corre		55 10V/ esponding value	Reference standard p		
Anal	0 : Disab	oled	×	×	4 : Ai	1	6384	Ai×(F53, F	F54)	
og (A	1 : Rpm	frequency	4096	F88 parameter set value	5 : Ai1	1	6384	Ai1×(F55, 1	F56)	
0) o	2 : Outpu	ut current	8192	F95 parameter set value	6 : Ai2		.6384	Ai2×(F59, 1	F60)	
Analog (AO) output	3 : Outp	ut voltage	2200 3800	220.0 V F89 parameter set value 380.0 V	7 : PID	16384		100%		
	0	F64	A out : 0V C	orresponding value	-32767~3276	57		0		
	\bigcirc	F65	A out : 10V	Corresponding value	-32767~3276	7		4096	P5-12	
	×	F66	Scanning cyc	cle of digital input	10~2000		0.1ms	10	D5 14	
	×	F67	Di1, Di2 set	up	0~2			0 P5-1		
Di		1 / /	Di2(REV/Stop) Di3 (FWD/RE) 1 : Di1(F V), Di2 (Stop), Di1 (Run)	Run/Stop) , Di2(FV , automatically dis			tup at the sam	ne time.	
Digital input	×	F68	Di3 setup		0~14			1		
input	×	F69	Di4 setup		0~14			2		
	×	F70	Di5 setup		0~14			6	P5-15	
	×	F71	Di6 setup		0~14			7	F 5-15	
	×	F72	Di7 setup		0~14			10		
	×	F73	Di8 setup		0~15			3		

-Summary of parameter settings-Appendix-C

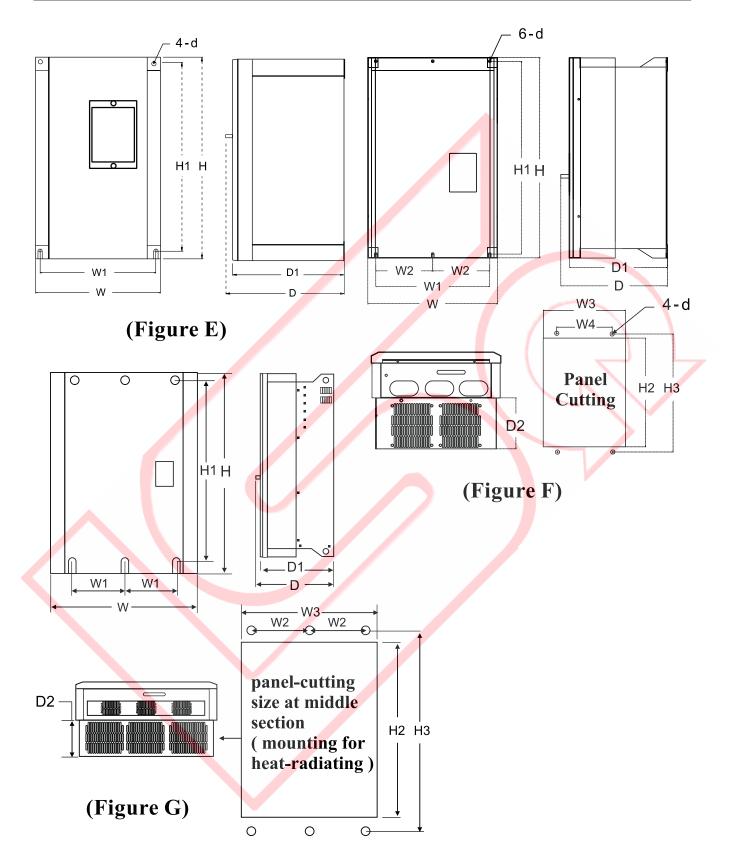
4	Changeable during operation	Parameter code	Descriptions	Setting range	Unit	Page No.						
Digital input	 0 : Disabled 1 : Enabled b external fa 2 : RESET 3 : Free-Run 	y 5:St	13:Di a 14:Di a	 12 : Pause the automatic operation 13 : Di activate the PID 14 : Di activate the Ai1 15 : MODBUS(can be set by Di8 only) 								
	×	F74	Relay setup	0~10		1		P5-17				
Digi	×	F75	DO setup	0~10		1	0	P3-17				
Digital (Do) output		abled Ilty output operation	3 : In zero speed6 : In acceleration4 : Forward rotation7 : In deceleration5 : Reversal rotation8 : Frequency	1 8								
ut	×	F76	Frequency to reach	0.00~300.00	Hz	60.00	50.00	P5-18				
Ju fre	×	F77	Jumping frequency 1	0.00~300.00	Hz	0.0	00					
Jumping frequency	×	F78	Jumping frequency 2	0.00~30 <mark>0</mark> .00	Hz	0.0	P5-18					
CY G	×	F79	Jumping bandwidth	0.00~1 <mark>0.</mark> 00	Hz	0.0						
	×	F80	Stall protection setup	0~31			7	P5-19				
	bit4 : AVR voltage-regulating function bit1 : Protection function F82bit3 : Protection function F84 bit0 : Protection function F81bit2 : Protection function F83											
7	X	F81	Stalling voltage setup for deceleration	330.0~400.0	V	380						
lotor		101		660.0~800.0		760	0.0	P5-20				
Motor protection setup	X	F82	Stalling current setup for acceleration	30.0~200.0	%	170	0.0	1 5-20				
ection	X	F83	Stalling current setup for operation	30.0~190.0	%	% 160.0						
ı setu	X	F84	Current level of electronic thermal relay	1.01~2.00	F90	1.50		P5-21				
dt	×	F85	Acting time of electronic thermal relay	0.1~120.0	Second 60.0							
	If .	l relay	is trigg	gered.								
	0	F86	Output current restriction	30.0~200.0	%	180	0.0	D5 21				
	0	F87	Oscillation-inhibit gain	0.0~100.0	%	15	P5-21					
	×	F88	Rated frequency(rms)	40.00~70.00	Hz	60.00	50.00					
Para	×	F89	Rated voltage(rms)	150.0~255.0	v	220.0	200.0	P5-21				
mete		F 09	Kated voltage(iiiis)	300.0~510.0	v	440.0	380.0	F 3-21				
rs of	×	F90	Rated current	0.1~(F95×1.3)	А	F9	95					
Parameters of motor and ac drive	×	F91	Rated slip frequency	0.00~10.00	Hz	4.0	00	D5 22				
or and	\bigcirc	F92	Slip compensation factor	0.0~200.0	%	50.0		P5-22				
1 ac c	×	F93	PWM carrier frequency	2000~16000	Hz	50	P5-23					
lrive	×	F94	Vdc indicating value gain (read only)	50~300	Pu	Pu 140						
	X	F95	Rated current of ac drive (read only)	1.0~500.0	А	5.	0					

Parameter Ex-factory Page during \times F96 V/F curve selection 0~1 0 P5-23 0: 3-point straight line setup 1: 2-point curve setup \times F97 Max. voltage / frequency setup 0.10~300.00 Hz 60.00 50.00 0.1~255.0 220.0 200.0 P5-23 V Х F98 Highest output voltage setup 0.2~510.0 440.0 380.0 V/F curve setupt Х F99 0.10~300.00 3.00 2.50 Highest output voltage setup Hz 0.0~255.0 16.5 15.0 \times F100 V Intermediate voltage setup 0.0~510.0 33.0 28.5 P5-24 \times F101 1.50 1.25 0.00~20.00 Min. output voltage / frequency setup Hz 0.0~50.0 9.5 8.5 \times F102 V Min. voltage setup 19.0 0.0~100.0 17.0 F103 Х Curve modulating gain 0.0~100.0 % 30.0 P5-25 0.0% : Straight line 100.0% : 3-time curve \times F104 **RS-485** Communication address 1~254 1 P5-26 \times F105 0~4 2 Data transmission speed 0:2400 1:4800 2:96003:19200 4:38400F106 P5-26 Х 0~3 0 Communication information format Communication setup 0: 8, N, 1 RTU (1 start bit + 8 data bits + 1 stop bit) 1: 8,E,1 RTU (1 start bit + 8 data bits + 1 Even bit + 1 stop bit) 2: 8, 0, 1 RTU (1 start bit + 8 data bits + 1 Odd bit + 1 stop bit) 3: 8,N,2 RTU (1 start bit + 8 data bits + 2 stop bit) X F107 3~50 Communication-responding delay time 5 ms P5-26 F108 0~8 0 \times Feedback of receiving failure 0 : Normal receiving 4 : Packet-receiving time over 0.2 sec 7 : Parameter value exceeds range 1 : Functional code error 5 : Modify the set parameters that are 8 : The set parameters are unchangeable 2: CRCL error unchangeable during operation when locked (except F4,F18,F142) 3 : CRCH error 6 : Parameter code error \times F109 Current failure record 0~20 0 F110 Failure record of last time Х 0~20 0 P5-33 \times F111 Failure record of last two times 0~20 0 Х F112 Failure record of last three times 0~20 0 Failure record 0 : Communication failure of digital operation panel 7 : Low DC voltage during operation (L.V) 8 : Electronic thermal relay enabled 1 : Over-voltage or over-current in standby state 2 : Over-voltage or over-current during acceleration 9 : AC drive overload (150%, 60 sec/CT, 120%,60 sec/VT) 3 : Over-voltage or over-current during deceleration 10 : Over temperature or PF or PUF malfunction 4 : Over-voltage or over-current at constant speed 11 : Parameters saved in DSP are locked and unchangeable. 5 : External failure 12 : Parametric setting error 0(Parameters are out of range) 6 : DC over voltage (O.V) 13 : Parametric setting error 1(Di repeated setting)

-Summary of parameter settings-Appendix-C


6	Changeable during operation	Parameter code	Descriptions	Setting range	Unit	Ex-factory set value	Page No.			
Failure record	15 : Para	imetric setti	ing error 2(F101>F99>F97, F15>F16) ing error 3(F90>F95×1.3) setting error (F97, F98, F101, F102, F103)	17 : Program code error 18~20 : Reserved for failure signals						
rd	×	F113	Number of times to auto-reset the failure during operation	0~10		0	P5-33			
	×	F114	PID mode	0~4		0	P5-34			
		ble PID lown reset value to zero	 2 : Reserve the PID value at shutdown 3 : Di enable (shutdown, reset PID value to zero) 	4 : Di enable (Reserve t	he PID va	lue at shut	down)			
	×	F115	PID Command point	0~3		0	P5-35			
Ext	0:F122	2 1:	Ai(V.R) 2 : Ai1 3 : Ai2							
External PID	×	F116	PID feedback point	0~1		0	P5-35			
l PID	0 : Ai1	1:	Ai2			$\overline{}$	7			
	\bigcirc	F117	PID feedback point	0.05~10.00	Second	0.20				
	\bigcirc	F118	PID output limit	0.00~100.00	%	100.00				
	\bigcirc	F119	Кр	1.00~300.00	%	100.00	D5 25			
	0	F120	Ki	0.00~300.00	%	25.00	P5-35			
	0	F121	Kd	0.00~300.00	%	2.00				
		F122	PID command value setup	0.00~100.00	%	50.00				
	×	F123	Automatic operation mode	0~4		0	P5-36			
			ion mode disabled 2 : Shutdown after cyclic eciprocating operation 3 : Main speed after recip			speed after tion	cyclic			
	×	F124	Number of times of cycle	1~30000	Times	1				
	×	F125	Time of automatic operation mode at stage 0	-30000~30000	Second	1				
Auto	×	F126	Time of automatic operation mode at stage 1	-30000~30000	Second	0				
matic	×	F127	Time of automatic operation mode at stage 2	-30000~30000	Second	0				
Automatic operation	X	F128	Time of automatic operation mode at stage 3	-30000~30000	Second	0				
ratio	×	F129	Time of automatic operation mode at stage 4	-30000~30000	Second	0	P5-37			
l	X	F130	Time of automatic operation mode at stage 5	-30000~30000	Second	0				
	X	F131	Time of automatic operation mode at stage 6	-30000~30000	Second	0				
	X	F132	Time of automatic operation mode at stage 7	-30000~30000	Second	0				
	X	F133	Time of automatic operation mode at stage 8	-30000~30000	Second	0				
1	×	F134	Time of automatic operation mode at stage 9	-30000~30000	Second	0				

	<u>01</u> 11												
7	Changeable during operation	Parameter code	Descriptions	Setting range	Unit	Ex-factory set value	Page No.						
	×	F135	Time of automatic operation mode at stage 10	-30000~30000	Second	0							
Aut	×	F136	Time of automatic operation mode at stage 11	-30000~30000	Second	0							
omati	\times	F137	Time of automatic operation mode at stage 12	-30000~30000	Second	0	P5-37						
Automatic operation	\times	F138	Time of automatic operation mode at stage 13	-30000~30000	Second	0	15-57						
eratic	\times	F139	Time of automatic operation mode at stage 14	-3 <mark>00</mark> 00~30000	Second	0							
ň	\times	F140	Time of automatic operation mode at stage 15	-30000~30000	Second	0							
	* The positive and negative symbols used in F125~F140 signify the operating direction.												
R	×	F141	Retrieve parameters	0~5		0	P5-38						
Retrieval parameters	0 : Not r 1 : 220V retriev	0V,50HZ ret v setting Failure rec											
neter	\bigcirc	F142	To lock the functional parameters	0~1		0	P5-38						
s	0 : Char	ngeable	1 : Functional parameters locked (% except F	Parameters F4 and	1 F18)								
	X	F143	Enable the water pump function	0~1		0	P5-39						
	0 : Disa	ble	1 : Enable										
	×	F144	Sleep detection time	5~12000	Second	30							
	×	F145	Sleep level	0.0~100 <mark>.0</mark>	%	50.0							
Wa	\mathbf{X}	F146	Wake-up pressure error	0.0~100 <mark>.0</mark>	%	15.0	P5-39						
Water pump	×	F147	Time of standby operation detection	0~12000	Second	900	1 5-59						
dum	\times	F148	Standby operation time	0~12000	Second	60							
	\times	F149	Standby operation frequency	0.00~300.00	Hz	0.00							
	×	F150	Low water pressure (no water) detection level	0.0~100.0	%	8.0							
	×	F151	Time of low water pressure detection	0~12000	Second	60	P5-40						
	×	F152	Time of no-water standby and restart	0~12000	Second	1200	1 5-40						
	×	F153	Time of no-water standby and restart	1.00~2.00	1.00								


-Summary of Err codes and diagnostic descriptions- Appendix-D

Error codes	Description of failure
Err 0	Communication of digital operation panel failed
Err 1	Over-voltage or over-current during standby state (hardware detection and protection)
Err 2	Over-voltage or over-current during acceleration (hardware detection and protection)
Err 3	Over-voltage or over-current during deceleration (hardware detection and protection)
Err 4	Over-voltage or over-current during speed regulation (hardware detection and protection)
Err 5	External failure
Err 6	DC over voltage (O.V)
Err 7	DC low voltage (L.V) during operation
Err 8	Electronic thermal relay activated
Err 9	AC drive overloaded longer than the allowable time duration (150%, 60 seconds/CT, 120%, 60 seconds/VT)
Err 10	Over temperature, or PF or PUF malfunction
Err 11	DSP-saved parameters are locked and unable to change them.
Err 12	Parameter setup error 0 (out of range)
Err 13	Parameter setup error 1(Di repeated setting)
Err 14	Parameter setup error 2(F101>F99>F97,F15>F16)
Err 15	Parameter setup error 3(F90>F95×1.3)
Err 16	VT parameter setup error (F97,F98,F101,F102,F103)
Err 17	Program code error

Appendix-E-Dimensional drawings of mechanism-

-Dimensional drawings of mechanism-Appendix-E

* Dimensions shown in the figures above are for reference only. Please refer to the latest catalogue for the updated dimensions. We reserve the right to change the dimensions without notice.

Appendix-E-Dimensional drawings of mechanism-

200V class series

Applicable motor capacity	Roughing-in dimensions (mm)			Constant dimensions(mm)				ψ	ψ Holing, constant dimensions (mm)					Drawing No.
(HP)∕(KW)	W	Н	D	W1	W2	H1	D1	d	W3	W4	H2	H3	D2	
KP-AD 20	70.9	102	25.8			93	15.8	3.5	65.3	_	84.5			А
0.25 / 0.2														
0.5 / 0.4	82.5	145	138	66.5		128.5	127 5	4.6						В
1 / 0.75	02.5	175	150	00.5		120.5	127.5	ч.0						Ъ
2 / 1.5														
0.5 / 0.4														
1 / 0.75	114	172	146	101	-	159	136	5.3	—	-	—		—	С
2 / 1.5														
3 / 2.2	152	214	146	137.5		200	136	5.3	_	_				D
5/3.7											(
7.5 / 5.5												N	\mathbf{i}	
10 / 7.5	188	300	180	170	-	283	170	7		—		4	-	E
15 / 11													\rightarrow	
20 / 15	250	120	007	210		401	217	7	2.42	170	407	422	112	
25 / 18.5 30 / 22	250	420	227	218		401	217	7	242	170	407	422	112	
<u>30 / 22</u> <u>20 / 15</u>	_													
25 / 18.5														
30 / 22	250	458	227	218	—	401	217	7	242	170	445	460	112	
40 / 30														F
40 / 30														-
50 / 37	345	533	272	305	152.5	515	262	7	330	212	515	538	140	
60 / 45														
50 / 37								<u></u>						
60 / 45	345	563	272	305	152.5	515	262	7	330	212	546	568	140	
75 / 55														
100 / 75														
125 / 90	604	770	322	262.4	220	749.5	312	7	582	—	745	770	158	G
150 / 110														

-Dimensional drawings of mechanism-Appendix-E

400V class series

Applicable motor capacity	motor dimensions					stant ons(m	m)	ψ	Holing, constant dimensions (mm)					Drawing No.	
(HP)∕(KW)	W	Н	D	W1	W2	H1	D1	d	W3	W4	H2	H3	D2		
KP-AD 20	70.9	102	25.8	—		93	15.8	3.5	65.3	—	84.5	—		А	
0.5 / 0.4															
1 / 0.75	114	172	146	101	—	159	136	5.3		-		-	_	C	
2 / 1.5															
3 / 2.2	152	214	146	137.5		200	136	5.3						D	
5/3.7	152	214	140	157.5		200	150	5.5						D	
7.5 / 5.5															
10 / 7.5	188	300	180	170	_	283	170	7	—	-	—	_	-	Е	
15 / 11															
20 / 15													_	ιц	
25 / 18.5	250	420	227	218		401	217	7	242	170	407	422	112		
30 / 22	200			-10		.01				1/0	107				
40 / 30															
20 / 15															
25 / 18.5															
30 / 22	250	458	227	218		401	217	7	242	170	445	460	112		
40/30				-										F	
50 / 37															
50 / 37			0.50		1 5 0 5			_		212			1.10		
60 / 45	345	533	272	305	152.5	515	262	7	330	212	515	538	140		
75 / 55 60 / 45															
	345	563	272	305	152.5	515	262	7	220	212	546	568	140		
75 / 55	545	303	272	303	132.3	515	262		330	212	540	508	140		
100 / 73															
125 / 90															
175 / 132															
200 / 160	604	770	322	262.4	220	749.5	312	7	582		745	770	158	G	
250 / 185	007	110	522	202.4	220	19.5	512	,	502		, 15	,,,,,	150		
300 / 220															
350 / 260															

LONG SHENQ ELECTRONIC CO., LTD.

NO. 12-2, WULIN STREET, SHULIN CITY, TAIPEI COUNTY, TAIWAN, R.O.C (Shulin Industrial Park) Tel : 02-2684-2888(4 lines) Fax : 02-2684-2889 . 2684-2886

All the products are constantly modified thereof specifications to improve the perfection; for downloading the latest version of specifications, please visit Long Shenq website **http :** //**www.acinverter.com.tw**/.

* The company reserves the right to modify the models and specifications without notice. Copyright and all rights are reserved. No part of this publication may be reproduced in any form.